
www.manaraa.com

FORMALIZATION AND REFINEMENT OF A FORMAL APPROACH TO
ECLECTIC SOFTWARE DEVELOPMENT

by Mingu Lee

M.S., May 2001, Johns Hopkins University

B.S., March 1998, Ohio State University

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of The George Washington University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

January 31, 2011

Dissertation directed by

Theresa Jefferson
Assistant Professor of Engineering Management and Systems Engineering

www.manaraa.com

UMI Number: 3433254

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI 3433254

Copyright 2011 by ProQuest LLC.
All rights reserved. This edition of the work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106-1346

www.manaraa.com

 ii

The School of Engineering and Applied Science of The George Washington University

certifies that Min-Gu Lee has passed the Final Examination for the degree of Doctor of

Philosophy as of May 18, 2010. This is the final and approved form of the dissertation.

FORMALIZATION AND REFINEMENT OF A FORMAL

APPROACH TO ECLECTIC SOFTWARE DEVELOPMENT

Mingu Lee

Dissertation Research Committee:

Theresa Jefferson, Assistant Professor of Engineering Management and

Systems Engineering, Dissertation Director

John Harrald, Professor Emeritus of Engineering Management, Committee

Member

Julie J.C.H. Ryan, Associate Professor of Engineering Management and

Systems Engineering, Committee Member

Michael A. Stankosky, Professor of Engineering Management and Systems

Engineering, Committee Member

Don-In Kang, Computer Scientist, University of Southern California

Information Sciences Institute, Committee Member

www.manaraa.com

iii

© Copyright 2010 by Min-Gu Lee
All rights reserved

www.manaraa.com

 iv

Dedication

This thesis is dedicated to my parents who have encouraged and believed in me since the

beginning of my learning. Also, this thesis is dedicated to my wife, Yuri, and my son, Jake,

who have been a great source of love and happiness.

www.manaraa.com

 v

Acknowledgments

The author wishes to express his gratitude to Dr. Theresa Jefferson for her guidance during

the course of research.

www.manaraa.com

 vi

Abstract of Dissertation

FORMALIZATION AND REFINEMENT OF A
FORMAL APPROACH TO ECLECTIC

SOFTWARE DEVELOPMENT

Over the last 10 years the private sector has shown considerable interest in agile software

development methods, the same can be said of the government sector. However, agile

methods present limitations for the environment of government software development. The

Eclectic Software Development (ESD) approach provides a framework that capitalizes on

the benefits of agile and traditional methodologies for the government sector while

minimizing the limitations of both. The theory behind ESD is the selective use of the right

tools, methodologies, processes, and human resources by project leadership at the right

time, within the confines and structures already defined for large-scale and contract-based

government projects. This study used action research to apply ESD practices to real

government projects in a cyclic manner to both validate and refine ESD.

www.manaraa.com

vii

Table of Contents

Dedication ... iv

Acknowledgments .. v

Abstract of Dissertation ... vi
Table of Contents ... vii
List of Figures ...x

List of Tables .. xiv

Chapter 1: Introduction ... 1

1.1 Problem Statement ... 1

1.2 Background .. 2

1.2.1 Government Software Development Challenge Overview.. 2

1.2.2 Current Situation – Agile Adoption .. 3

1.2.3 Relevant Research ... 4

1.3 Purpose ... 5

1.4 Significance ... 6

1.5 Scope ... 7

1.6 Organization of the Document .. 7

Chapter 2: Literature Review .. 8

2.1 Software Development Methodology ... 8

2.1.1. Overview ... 8

2.1.2 Plan-Driven Methodology .. 11

2.1.2.1 Plan-Driven Methodology Overview ... 11

2.1.2.2 The Waterfall Model .. 11

2.1.2.3 The Prototyping Model ... 12

2.1.2.4 Rapid Application Development Model .. 12

2.1.2.5 Spiral Model .. 13

2.1.2.6 Rational Unified Process ... 13

2.1.3 Agile Software Development ... 15

2.1.3.1 Agile Software Development Overview .. 15

2.1.3.2 Extreme Programming (XP) .. 16

2.1.3.3 Crystal ... 17

2.1.3.4 Adaptive Software Development (ASD) ... 18

2.1.3.6 Feature-Driven Development (FDD) .. 20

2.1.3.7 Dynamic Systems Development Method (DSDM)... 21

2.1.4 Bridging Agile and Plan-Driven Development Methods.. 21

2.1.4.1 Applying Agility in Large Projects .. 21

2.1.4.2 Applying Agility in the Telecommunications Industry 23

2.1.4.3 Applying Agility in Government Projects ... 23

2.2 Eclectic Software Development ... 27

2.2.1 ESD Background .. 27

2.2.2 ESD Executive Summary ... 27

2.2.3 Philosophy of ESD .. 31

2.2.4 Government Sector Contract-Based Projects ... 34

2.2.5 Three Steps of ESD ... 35

2.2.5.1 Summary .. 35

www.manaraa.com

viii

2.2.5.2 Step 1: Recognizing Organization Standard ... 36

2.2.5.3 Step 2: Assessing Project Factors ... 36

2.2.5.3.1 Tools ... 39

2.2.5.3.2 Methodologies .. 40

2.2.5.3.3 Processes .. 42

2.2.5.3.4 People ... 42

2.2.5.3.5 Leadership ... 44

2.2.5.4 Step 3: Recognizing and Responding to Project Circumstances 46

2.2.5.4.1 Overview ... 46

2.2.5.4.2 Continuous Integrations and Milestone Demonstrations 47

2.2.5.4.3 Ask Simple Questions ... 48

2.2.5.4.4 Do Simple Math ... 49

2.2.5.4.5 Adopt Management by Walking Around (MBWA) 50

2.2.6 Informal Assessment ... 51

2.2.7 ESD Agile Best Practice Checklist .. 58

2.2.7.1 Introduction to Agile Software Programming .. 63

2.2.7.1.1 Motivation ... 63

2.2.7.1.2 Objectives ... 64

2.2.7.1.3 Manifesto ... 64

2.2.7.1.4 Principles ... 64

2.2.7.2 Popular Agile Software Development Methodologies.................................... 64

2.2.7.2.1 Scrum – Process framework .. 65

2.2.7.2.2 eXtreme Programming ... 66

2.2.7.3 Additional Commercial Agile Best Practices... 68

2.2.7.3.1 Management .. 69

2.2.7.3.2 Technical .. 69

2.2.7.3.3 Measurement ... 69

2.2.7.4 Scaling Agile .. 73

2.2.7.4.1 Challenges of Applying Agile Method to Enterprise 74

2.2.7.4.2 Scaling Agile Best Practices .. 74

2.2.7.5 Government Agile Best Practices ... 75

2.2.7.6 Other Considerations .. 76

2.2.7.6.1 Capability Maturity Model Integration ... 76

2.2.7.6.2 Earned Value Management .. 77

2.2.7.6.3 Agile Coach .. 77

2.2.7.6.4 Agile Training ... 77

Chapter 3: Research Questions and Method ... 78

3.1 Research Questions .. 78

3.1.1 Research Question 1 .. 78

3.1.2 Research Question 2 .. 78

3.1.3 Research Question 3 .. 78

3.2 Research Method: Action Research .. 78

3.3 Research Procedures .. 80

3.3.1 Selecting Client Organizations and Diagnosing .. 82

3.3.2 Action Planning .. 83

3.3.3 Action Taking .. 84

www.manaraa.com

ix

3.3.4 Evaluating by Collecting Data and Researching ... 85

3.3.5 Specifying Learning (and Refining ESD) ... 86

3.4 Project Schedule .. 86

3.5 Project Steps .. 87

3.6 Ethical Considerations ... 88

Chapter 4: Analysis and Findings .. 89

4.1 Overview .. 89

4.2 Refining ESD ... 89

4.3 Number of responses ... 92

4.4 Results from Project I .. 93

4.4.1 Project I Overview ... 93

4.4.2 Experience Interview (Project I).. 94

4.4.3 ESD Agile Assessment and Agile BP Checklist (Project I) 99

4.4.4 Result Interview (Project I) ... 103

4.4.5 Observer’s Note .. 104

4.3.5 Research Challenges .. 105

4.5 Results from Project II .. 106

4.5.1 Project II Overview .. 106

4.5.2 Experience Interview (Project II) .. 106

4.5.3 ESD Agile Assessment Form and BP Checklist .. 112

4.5.4 Result Interview .. 117

4.5.5 Observer’s Note .. 118

4.3.5 Research Challenges .. 119

4.6 Testing of Research Questions ... 120

4.6.1 Research Question 1 .. 120

4.6.2 Research Question 2 .. 122

4.6.3 Research Question 3 .. 125

Chapter 5: Conclusions and Recommendations ... 127

5.1 Conclusions .. 127

5.2 Synthesis of Research Questions ... 129

5.3 GAgile Objective .. 132

5.4 Recommendation for Future Work ... 132

Appendix A Interview Notes about the Participants’ and Organization’s Experiences and
Expectations .. 142

Appendix B Agile Program Assessment Form and Best Practice Checklist 148

Appendix C Interview Notes about Participants’ Experiences with ESD and Results of the
Project ... 154

Appendix D Researcher’s Observation Note ... 156

www.manaraa.com

x

List of Figures

Figure 1 Manifesto for Agile Software Development ... 8

Figure 2 The Waterfall model .. 11

Figure 3 The Prototyping model ... 12

Figure 4 The RAD model ... 12

Figure 5 The Spiral model ... 13

Figure 6 The Rational Unified Process ... 14

Figure 7 The Rational Unified Process (Source: IBM) .. 14

Figure 8 Extreme Programming .. 16

Figure 9 XP practices [71] ... 17

Figure 10 Crystal framework for methodology selection [73] .. 18

Figure 11 ASD lifecycle [75] ... 19

Figure 12 Scrum process diagram [77] ... 20

Figure 13 The five processes of FDD [78] .. 20

Figure 14 DSDM process: The three pizza and a cheese [80] ... 21

Figure 15 Class diagram of software development methods ... 26

Figure 16 Three steps of ESD ... 29

Figure 17 ESD pentagon ... 31

Figure 18 Three aspects for successful software development project .. 35

Figure 19 Five major factors in software development ... 37

Figure 20 Lifecycle – Case Study A [32] ... 54

Figure 21 ESD Pentagon – Case Study A.. 57

Figure 22 ESD Agile Best Practice Checklist (version 4.0) .. 59

www.manaraa.com

xi

Figure 23 Scrum Process Diagram [77] .. 66

Figure 24 Sample Iteration Burn-down Chart .. 70

Figure 25 Sample Velocity Chart. .. 71

Figure 26 Sample Product Burn-down Chart ... 72

Figure 27 Sample Iteration Completion Trends Chart .. 73

Figure 28 Sample Iteration Task Growth Chart ... 73

Figure 29 Susman and Evered’s AR Cycle [160] [149, 161] ... 81

Figure 30 Proposed schedule ... 86

Figure 31 Project steps .. 87

Figure 32 Experience Interview Results for Project I ... 94

Figure 33 Methodology Used for Previous Projects (Project I) .. 95

Figure 34 Methodology Used for Previous Government Projects (Project I) 95

Figure 35 Methodology Planning to Use for other Government Projects (Project I) 96

Figure 36 Methodology Planning to Actively Advocate (Project I) .. 97

Figure 37 Thematic content analysis for initial interview (Project I) .. 99

Figure 38 Agile Best Practices Checklist (Project I) ... 100

Figure 39 Agile program assessment form – rate (Project I) ... 101

Figure 40 Summative content analysis: Agile program assessment form - challenges/comments

(Project I) ... 101

Figure 41 Summative content analysis: Agile program assessment form – Approach (Project

I)... 102

Figure 42 Summative content analysis: Agile program assessment form – Overall (Project I)102

Figure 43 ESD Results (Project I) ... 103

Figure 44 Will you use ESD again? (Project I) .. 104

www.manaraa.com

xii

Figure 45 Will you actively advocate for ESD in the future? (Project I) 104

Figure 46 Experience Interview Results for Project II .. 107

Figure 47 Methodology Used for Previous Projects (Project II)... 107

Figure 48 Methodology Used for Previous Government Projects (Project II) 108

Figure 49 Methodology Planning to Use for other Government Projects (Project II) 109

Figure 50 Methodology Planning to Actively Advocate (Project II) .. 109

Figure 51 Thematic content analysis for initial interview (Project II) .. 112

Figure 52 Agile Best Practices Checklist (Project II) ... 113

Figure 53 Agile Process based on Agile Best Practices Checklist Review (Project II) 113

Figure 54 Agile Technical Framework based on Agile Best Practices Checklist Review (Project

II) ... 114

Figure 55 Agile program assessment form – rate (Project II) .. 115

Figure 56 Summative content analysis: Agile program assessment form - challenges/comments

(Project II).. 115

Figure 57 Summative content analysis: Agile program assessment form – Approach (Project

II) ... 116

Figure 58 Summative content analysis: Agile program assessment form – Overall (Project II)116

Figure 59 ESD Results (Project II) ... 117

Figure 60 Will you use ESD again? (Project II) .. 118

Figure 61 Will you actively advocate for ESD in the future? (Project II) 118

Figure 62 Experiences of ESD-like (Project I) ... 123

Figure 63 Experiences of ESD (Project I) ... 124

Figure 64 Experiences of ESD-like (Project II) ... 124

Figure 65 Experiences of ESD (Project II) ... 125

www.manaraa.com

xiii

Figure 66 Agile Best Practice Checklist Template .. 149

www.manaraa.com

xiv

List of Tables

Table 1 Differences between Private and Public Sector .. 4

Table 2 Characteristics of plan-driven and agile methods [31] .. 9

Table 3 Five critical factors in agile and plan-driven methods [31] ... 10

Table 4 Comparison between Waterfall and Agile [53] ... 10

Table 5 Overview of agile methods .. 15

Table 6 Limitations of agile methodology in government projects .. 24

Table 7 Leadership models in information systems/information technology 38

Table 8 Tools selection example .. 39

Table 9 Management and leadership [128] .. 44

Table 10 Summary - Case Study A [32] .. 52

Table 11 Agile Program Assessment Form ... 60

Table 12 Overview of Other Agile Methods... 67

Table 14 Target projects .. 83

Table 15 Refining ESD ... 90

Table 16 Number of responses .. 92

Table 17 Summative content analysis for initial interview (Project I) .. 97

Table 18 Summative content analysis for initial interview (Project II) ... 110

Table 19 Testing of Research Question 1 .. 120

Table 20 Testing of Research Questions 2 .. 122

Table 21 Testing of Research Question 3 .. 125

Table 22 Agile Assessment Form .. 149

www.manaraa.com

 1

Chapter 1: Introduction

1.1 Problem Statement

Over the last 10 years the private sector has shown considerable interest in agile

software development methods, and the government sector, including the U.S Army[1], the

Federal Bureau of Investigation[2], the Department of Defense[3, 4], the Central

Intelligence Agency[5], the Environmental Protection Agency[6], the German

government[7], the City of Calgary, Canada[8], and other government organizations[9-12]

are experiencing with the new approach. However, agile methods present limitations for

the environment of supporting government software development. The Eclectic Software

Development (ESD) approach provides a framework including data collection tools and

analysis processes that capitalizes on the benefits of agile and traditional methodologies for

the government sector while minimizing the limitations of both. The theory behind ESD is

the selective use of the right tools, methodologies, processes, and human resources by

project leadership at the right time, within the confines and structures already defined for

large-scale and contract-based government projects. This study used action research to

apply ESD practices to real government projects in a cyclic manner to validate and refine

ESD.

Eclectic approaches are currently being utilized in various fields [6, 13-19], but they

are individual projects lacking the formal validation the government sector demands. Using

action research, this study examined the following research questions. This study focused

on balancing agile and plan-driven methodology in the government software development

community.

www.manaraa.com

 2

• Research Question 1. Is it possible to formalize the eclectic approach so that it

can be adopted by projects in the same way the traditional approach has been

used?

• Research Question 2: Is ESD well accepted by new practitioners?

• Research Question3: Does this ESD pentagon represent an acceptable

management tool? If not what criteria would be needed to make it one?

1.2 Background

1.2.1 Government Software Development Challenge Overview

The U.S. government’s FY 2006 Information Technology (IT) portfolio was $65

billion [20], making the U.S. government the largest IT investor in the world. The George

W. Bush administration monitored the performance of IT development projects using a

management watch list. This watch list included 342 of 1,087 projects valued at $15

billion, representing more than 30% of the total FY 2006 portfolio. The FY 08 actual was

$72 billion, the FY 09 budget was $74 billion, and the FY 10 budget was $78 billion [21].

In June, 2009, the Barack Obama administration launched the IT dashboard,

http://it.usaspending.gov, which allows people to see how the federal government is

spending taxpayer dollars on its IT portfolio.

 Both public and private sectors experience difficulties successfully delivering

software on time and within budget with the required functionalities. When a large

government project fails, the impact is huge. Recent failed U.S government projects

include the IRS Business Systems Modernization project, which was delayed for five years

and was over budget by $2 billion; the FBI Virtual Case File system, which spent $170

million, only to be scrapped and reinitiated; and the Transportation Security Administration

CAPPS II project, which was abandoned after delays and privacy concerns surfaced [22].

www.manaraa.com

 3

The Veterans Affairs (VA) Replacement Scheduling Application, which was to be

deployed in January 2010, was terminated in March 2009 [23]. The Census Bureau

cancelled the wireless data collection project after the contractor had already been paid

$236 million [24]. Governments of other nations have faced similar problems [25-29].

1.2.2 Current Situation – Agile Adoption

The private sector software industry has explored and come to appreciate agile

software development methodology. The proven history and reputation of agile methods in

the private sector have drawn the interest of the government [1-12]. For example,

CrossTalk, an approved Department of Defense (DoD) software engineering journal, had

“Agile Software Development” as a theme for the October 2002 edition and “Agile

Development” as a theme for the December 2006 edition.

Many governments have introduced various initiatives to improve the success rate of

their IT projects [30]. For example, to train qualified IT project managers, the U.S

government initiated the IT Exchange Program [20], which permits government IT

managers to work temporarily in the private sector, exposing them to cutting-edge

management and technical trends, including agile methodology.

Even though agile methodology was originally developed for small projects, project

managers in large-scale projects want to inject needed flexibility and strive for continuous

process improvement by balancing agile and plan-driven methodology [2, 3, 31-34].

Recently, agile methodology, in both authentic and hybrid styles, has been adopted by

some government software development projects [1-6, 8-12, 32, 35-37]. However, some

organizations face challenges when migrating from traditional to agile methodology

because there are conceptual differences between these two methodologies [6, 38].

www.manaraa.com

 4

1.2.3 Relevant Research

In general, after a new alternative model is introduced, the software engineering

industry compares the new model to classic models with respect to meeting user needs [39-

41]. In the late 1980s, new alternative models included prototyping and incremental

development models. In the 2000s, it is agile methodology.

The public sector operates IT projects differently from the private sector and faces

unique challenges [42-44]. Specifically, applying agile methodology to a government

project is more challenging. As shown in Table 1[45], the United Kingdom Computing

Service and Software Association (CSSA) compares private and public sector IT projects.

Table 1 Differences between Private and Public Sector

Sector Differences

Private Sector measurable outcomes-driven

competition-driven

less visible to the public

less regulated

objective-driven (risks taking)

designed to minimize impact of failed projects

Public Sector complex success factors

less competition with other projects

www.manaraa.com

 5

Sector Differences

Inter-agencies interaction

• References

o Data.gov

o USAspending.gov

o Recovery.gov

o Regulations.gov

o FirstGov [46], now USA.gov

o Integrated Acquisition Environment (IAE) [47]

o Business Gateway [47]

o Other examples [42, 46]

high visible to the public

Less adaptive [43]

regulated

• References

o E-Travel [47]

o Others examples [42, 48]

risk-averse culture

1.3 Purpose

This study focuses on two characteristics (shown in bold in Table 1) related to

software development methodology: Inter-agencies interaction and Less adaptive.

First, government projects require both technical interfaces and political collaboration

with systems from various departments, services, or agencies. The selected methodology

must harmonize with methodologies from other departments. These are often legacy

systems that relate to regulations and policies.

Data.gov, USAspending.gov, Recovery.gov, and Regulations.gov are great examples.

FirstGov.gov project, renamed to USA.gov, linked 47 million federal government web

www.manaraa.com

 6

pages when this collaborative project was launched in 2000 [46], and the Integrated

Acquisitions Environment (IAE) initiative for the U.S. government provided an

interoperable acquisition gateway with other agencies [47]. Furthermore, the administration

established the Federal Enterprise Architecture (FEA) Program for improving the

effectiveness of an agency’s IT management by maximizing government-wide service

providers, which requires more collaboration than ever before.

Second, a government project does not easily adapt to change. It usually requires a

well-defined, planned, controlled, auditable, and tested project. The government often has a

set of predefined processes that contractors must follow and tailor the project to fit. In

addition, subcontractors must comply with their prime contractor’s defined process or

methodology.

1.4 Significance

Eclectic Software Development was originally developed in 2004 to support one of

U.S. DoD software development projects. The methodology was employed in the

successful development of an e-government web application within the Software

Engineering Institute’s (SEI) Capability Maturity Model Integration (CMMI) Level 3

process [32]. Since then, it has been applied to additional projects with continuous

refinement. ESD provides a pragmatic, instead of a dogmatic, framework for government

software development projects. ESD involves the selective use of the right tools,

methodologies, processes, and human resources by project leadership at the right time,

within the confines and structures of the processes and procedures already defined for

large-scale and contract-based government projects.

www.manaraa.com

 7

1.5 Scope

This research implemented ESD for selected, real government projects in a cyclic

manner. Each cycle involves data collection through a combination of interviews,

interpretation, and literature review. Lessons learned from participants in one project have

been examined and applied to the next project in order to effectuate change. Action

research consists of actions invoking change and research which increases understanding

[49]. It was proposed because this study demands a cyclic, responsive, and participative

approach. It combined theory and practice in real situations.

1.6 Organization of the Document

This chapter introduces the research project, including problem statement, background,

purpose, significances, and scope. Chapter 2 presents a literature review including a

summary of popular software lifecycle methodologies, and a review of ESD. In Chapter 3,

the research questions are presented, and in Chapter 4 the research methodology are

presented. Chapter 5 presents conclusions and recommendations followed by appendices

which enclose various data collection forms that were used.

www.manaraa.com

 8

Chapter 2: Literature Review

2.1 Software Development Methodology

2.1.1. Overview

This section 2.1 describes popular software development methods of the plan-driven

and agile methodologies. Plan-driven methods consist of sequential, well-defined processes

such as requirements identification and design specification [31]. Plan-driven versus agile

methods are compared as ‘process-oriented’, ‘predictive’, and ‘heavyweight’ method

versus ‘people-oriented’, ‘adaptive’, and ‘lightweight’ method [50, 51].

Practitioners and authors of agile methods and practices produced the “Manifesto for

Agile Software Development” in 2001 as illustrated in Figure 1. It is available at

www.agilemanifesto.org [52].

Figure 1 Manifesto for Agile Software Development

The characteristics of plan-driven and agile methods were compared by Boehm and

Turner [31] as shown in Table 2. The major difference is the plan-driven method is

characterized by a culture of clear policies and procedures and the agile method is marked

by a culture of a high degree of freedom of implementing change or deviation from clear-

cut policies and procedures. The plan-driven method shares many common characteristics

with government projects. In general, government projects demand clear policies and

procedures and also provide a low degree of freedom. The government software

development community, however, is increasingly demanding efficient responsiveness to

www.manaraa.com

 9

changes. Boehm and Turner recommend selecting the appropriate method based on the five

critical factors shown in Table 3. Agile methodologies are recommended for small, low-

critical, and highly dynamic projects, while plan-driven methodologies are recommended

for large, mission critical and less dynamic projects.

Table 2 Characteristics of plan-driven and agile methods [31]

Characteristics Plan-Driven Agile
Application Primary project

goals
• Predictability

• Stability

• High quality

• Immediate value

• Responsiveness to
changes

Project size • Large • Small
Application
environment

• Stable

• Low change

• Project/organization
focused

• High-change (Does not
mean welcomes last-
minute change)

• In-house

• Flexible user system

• Project focused
Management Customer

relations

• Contract

• Build Trust: Process
maturity

• Dedicated on-site
customer

• Reflects the needs and
desires of the users

• Build Trust: Working
software and customer
participation

Planning and
control

• Quantitative plan • Qualitative plan

Project
communications

• Explicit, documented
knowledge

• Tacit knowledge

• Person-to-person and
frequent
communication

Technical Requirements • Specific, formalized
requirements

• Adjustable, informal
stories

Development • Extensive design • Simple design
Test • Test to specifications • Develop test before

code
Personnel Customer

 • Collaborative

Developer

• Smaller percentage of
talented people

• Richer mix of higher-
skilled people

www.manaraa.com

 10

Characteristics Plan-Driven Agile
Culture

• Clear policies and
procedures

• Many degrees of
freedom

• Craftsman

Table 3 Five critical factors in plan-driven and agile methods [31]

Critical Factor Plan-Driven Agile
Size Small Hard to tailor down Well matched

Large – Government
Project

Evolved to handle Limit scalability

Criticality Low Hard to tailor down
High – Government
Project

Evolved to handle Untested. Potential
difficulties

Dynamism Low – Government
Project

Excellent Potentially expensive
rework

High Potentially expensive
rework

Excellent

Personnel High-skilled people Need during definition
phase, but need fewer
later

Continuously need

Culture Freedom Well matched
Clear policies and
procedures –
Government Project

Well matched

Jim Highsmith presented the following table [53] during his presentation at the Agile

2009 conference to compare Waterfall and agile.

Table 4 Comparison between Waterfall and Agile [53]

Area Waterfall Agile

Performance Philosophy Conformance to Plan Adapt to Change

Performance Measure Scope, Schedule, Cost
Value, Quality,
Constraints

Product/Project Focus Project Product
Delivery Project End Continuous/Incremental

Organization Functional Teams
Feature Teams (Cross-
functional)

Planning
Task-based, Detailed Network
Diagrams

 Feature-based, timeboxed
iterations

www.manaraa.com

 11

Area Waterfall Agile

Management Culture Command-and-Control
Leadership-and-
Collaboration

Team Culture Manager Controls Self-organizing
Architecture/Requirements Big up-front Evolutionary

2.1.2 Plan-Driven Methodology

2.1.2.1 Plan-Driven Methodology Overview

The popular plan-driven method includes Waterfall, Spiral, Rational Unified Process

(RUP), Prototyping, Rapid Application Development (RAD) models. Some of the contents

in section 2.1.2 Plan-Driven Methodology and 2.1.3 Agile Software Development are

excerpts from the author’s previous paper [32]. Figures 2, 3, 4, 5, and 6 compare

development time and efforts among these plan-driven methodologies.

2.1.2.2 The Waterfall Model

This model consists of serialized development phases [54]. Royce is credited by

software engineering textbooks as the author of this oldest and most widely used model

[55, 56]. However, Cantor argues that the traditional Waterfall approach is “one of three

common, but inadequate, approaches” due to uncertainty in the progress [57].

One of the classic weaknesses of the Waterfall model is that it requires a complete list

of requirements at the beginning [40] and is less effective for environments that require

quick responses to changes. Figure 2 illustrates serialization of software development

activities throughout the development life cycle.

Figure 2 The Waterfall model

www.manaraa.com

 12

2.1.2.3 The Prototyping Model

This model is based on developing throwaway or evolutionary prototypes[55]. This

model is widely adopted for the development of user interface intensive applications.

Figure 3 shows a series of prototypes throughout the development life cycle.

Figure 3 The Prototyping model

Schrage suggests the prototyping partnership between developers and clients [58].

According to Schrage, requirement changes are inevitable. The developers and clients learn

from each other and working together to accomplish change. His idea of the prototyping

partnership is in accordance with some agile principles.

2.1.2.4 Rapid Application Development Model

In the Rapid Application Development (RAD) model, a SWAT (Skilled With

Advanced Tools) team develops an application within a short defined development time,

marked by user involvement. The team consolidates the design by Joint Application Design

(JAD) sessions, evaluates using prototypes, and builds using reusable components such as

CASE tools [59]. Figure 4 compares the length of development period in RAD and other

typical development.

Figure 4 The RAD model

www.manaraa.com

 13

Experiences with RAD led to initial versions of frameworks supporting other agile

methods such as Adaptive Software Development (ASD) and Dynamic Systems

Development Method (DSDM)[60, 61].

2.1.2.5 Spiral Model

The Spiral model involves incremental cycles. This model can be applied throughout

the life of the software. It works better with flexible environment such as internal software

development [62]. One of the classic weaknesses of Spiral model is that it can face the

death spiral [63]. This is when the project repeats the spiral without knowing when the

project can declare a successful end. A check mark indicates an end of each cycle in Figure

5.

Figure 5 The Spiral model

An extension of the Spiral model is the WinWin Spiral model which adds the process

of negotiation with stakeholders (which applies Theory W) at the start of every cycle [64].

A software manager is a ‘negotiator’ in Theory W,” while other management theories such

as Theory X, Y, and Z consider a manager as different characters. [65].

2.1.2.6 Rational Unified Process

A product from Rational Software, Rational Unified Process (RUP), captures the

software development best practices, including controlled iterative development,

requirement management, component-based development, modeling with the Unified

Modeling Language (UML), quality assurance, and change management [66]. This process

has four phases, and each phase consists of different weights of iterative development

www.manaraa.com

 14

activities as illustrated in Figure 7. These development activities overlap at given times, as

Figure 6 illustrates.

Figure 6 The Rational Unified Process

The phases and activities of RUP are illustrated in Figure 7. The four phases are

• Inception: Bring forth the idea or RFP into the Elaboration phase.

• Elaboration: Define the product vision and its architecture.

• Construction: Produce a product from an executable architectural baseline.

• Transition: Deliver the product to the hands of the user’s community.

Figure 7 The Rational Unified Process (Source: IBM)

www.manaraa.com

 15

2.1.3 Agile Software Development

2.1.3.1 Agile Software Development Overview

Various methodologies and practices have been developed to adopt continuous

changes in software development seamlessly. These include XP, Crystal, ADP, and

SCRUM in the US; FDD in Australia; and DSDM in Europe [67]. Table 5 provides an

overview of the methodologies.

Table 5 Overview of agile methods

Agile Methods Overview

XP Plan, design, develop, test, and release in short development cycles

throughout the development lifecycle by a small team with customer

involvement.

Crystal A framework for software development methodology selection based

on staff size, system criticality, and project priority

ADP Accepts continuous changes by continuous adaptations

Scrum Like a team of eight players in rugby, a small development team, with

no more than 10 team members, acts together with a well-defined role

on a single goal for each increment

FDD Features object-oriented based development of components with

collaboration between domain experts and programmers.

DSDM Project delivery framework with iterative and incremental steps,

which takes less time and discovers and corrects problems earlier than

the waterfall method.

These agile methodologies have been widely explored and utilized by the software

industry. The Agile Alliance site (http://www.agilealliance.org/) is a prime source of

information concerning this methodology. This section provides an overview of popular

agile methods.

www.manaraa.com

 16

Twelve principles [68] are available at www.agilemanifesto.org. Agile methodologies

are change-driven, customer-oriented, people-oriented, and result-oriented. They are less

complex and rigorous than plan-driven, contract-based, process-oriented, and design-

oriented methodologies.

2.1.3.2 Extreme Programming (XP)

Kent Beck is the leader of Extreme Programming (XP). XP programmers continually

plan, design, develop, test, and release in short development cycles throughout the

development lifecycle. Figure 8 demonstrates the small and continuous development

activities using small squares.

Figure 8 Extreme Programming

When the C3 project team invented the “eXtreme Programming” methodology at

Chrysler [69], they broke away from the methodology of the day. Figure 9 provides the

following key practices of XP [70-72].

• Planning game: Predicting accomplishment for the given schedule rather than

predicting schedule for the given scope.

• Small releases: Releasing tested software every iteration and on a frequent

basis

• Metaphor: Developing a concept of understanding

• Simple design: Building software with simple designs throughout the lifecycle

• Test-driven development: Building test cases and then coding instead of

coding and then building test cases

www.manaraa.com

 17

• Refactoring: Refactoring to improve the design of existing code

• Pair programming: Pairing two programmers to collaborate

• Continuous integration: Fully integrating code changes at all times

• Collective code ownership: Improving any code at any time by any pair of

programmers

• No overtime

• On-site customer: Having a customer available whenever they are needed to

answer questions and to provide direction

Figure 9 XP practices [71]

2.1.3.3 Crystal

Alistair Cockburn, the leader of Crystal, proposes a framework for software

development methodology selection based on project priority, system criticality, and staff

www.manaraa.com

 18

size [51]. His idea is that no one methodology fits all projects. Figure 10 is a framework of

Crystal [73]. The horizontal axis indicates the staff size. The figure shows that a project

needs more communication coordination as the staff size increases. The vertical axis

indicates system criticality based on the potential damage from poor quality. The project

needs more validation practices as the system criticality increases. The different planes

indicate different project priority, such as productivity and legal liability. For example, E40

means a project with 20 to 40 people with potential loss of essential money. When this

project is changed to L100, it requires a different methodology to support more

communication coordination and more validation practices.

Figure 10 Crystal framework for methodology selection [73]

2.1.3.4 Adaptive Software Development (ASD)

Jim Highsmith is a founder of ASD, which was evolved from Radical Software

Development [60], a iterative and short RAD for large organizations. ASD involves

www.manaraa.com

 19

accepting continuous changes by continuous adaptations with a “Speculate -Collaborate-

Learn” lifecycle, which replaces the “Plan-Design-Build” lifecycle [74].

Figure 11 ASD lifecycle [75]

Ken Schwaber, Mike Beedle, and Jeff Sutherland are key contributors to Scrum. Like

a team of eight players in rugby, a small development team with no more than 10 team

members in Scrum acts together with a well-defined role on a single goal for each

increment [76]. A small team works on a series of “Sprint” (iteration) based on “Backlog”

(a list of tasks) with “Scrum” meetings (short daily meetings). During a 15-to-30-minute

Scrum meeting, the team discusses its accomplishments since the last meeting, obstacles,

and plans from that time until the next meeting. Figure 12 illustrates the Scrum process

flow.

www.manaraa.com

 20

Figure 12 Scrum process diagram [77]

2.1.3.6 Feature-Driven Development (FDD)

Jeff De Luca and Peter Coad founded this method. Figure 13 illustrates its five

processes [78]. These five processes are located between initial requirements and system

test because this method considers the core problem area in software development to be

between those two activities. However, other activities can work with the core FDD

process.

Each iteration of design and build is no longer than two weeks. Unlike the plan-driven

method with long design and build phases, FDD supports projects with rapid business

requirement changes. FDD also requires collaboration between domain experts and

programmers.

Figure 13 The five processes of FDD [78]

www.manaraa.com

 21

2.1.3.7 Dynamic Systems Development Method (DSDM)

The DSDM Consortium in the UK publishes this project delivery framework as shown

in Figure 14. This incremental and iterative framework consists of seven phases [79].

Compared to Waterfall, it takes less time and recovers from problems early.

Figure 14 DSDM process: The three pizza and a cheese [80]

2.1.4 Bridging Agile and Plan-Driven Development Methods

2.1.4.1 Applying Agility in Large Projects

According to Boehm, an author of the spiral model, and Turner, plan-driven

methodology has a culture of clear policies and procedures and agile methodology has a

culture of a high degree of freedom [31]. Fowler suggests traditional methodologies for

projects with large team (over hundred) or fixed price projects [50].

Highsmith states that “Chaos is easy – just do it. Stability is easy – just follow steps.

Balancing is hard – it requires enormous managerial and leadership talent” and emphasizes

leadership in ASD [74].

www.manaraa.com

 22

The growing deployment of agile methodologies has resulted in many articles about

applying agile methods to large projects. Some large organizations conducted pilot projects

to evaluate agile methods for timely delivery of product and flexibility but without

compromising the organization’s high quality standards [17].

More than other agile methods, XP initially had been successfully proposed and

applied to large projects by choosing selected practices in the existing process [17, 18],

modifying the rules [81-83], evolving the practices [84], adding new practices [85-87], or

reorganizing companies [88]. XP was originally designed for projects involving fewer than

10 people. Because many successful development projects have given credit to the

effectiveness of XP, more large and complex projects employ XP-influenced approaches

knowing that for them using XP directly is not recommended. However, to take advantage

of XP in large projects, the participants must rigorously apply the method [81].

Enterprise Agile and Scaling Agile are now widely accepted concepts [89-91]. At the

Agile 2009 Conference, many presenters from large corporations including Borland [92,

93], HP [94], Qualcomm [94], BMC [94], MySpace [95], Microsoft [96, 97], Amazon.com

[98], Marriott [99], SIEMENS [100], IBM [101], Lockheed Martin [6], Yahoo [102],

Google [102], and Disney [103] shared their agile stories.

Industry leaders agree that the agile method can work with the existing methods for

large projects. Cockburn, an author of the Crystal method, proposes that plan-driven

projects can benefit from applying agile values [73]. Paulk, at the Software Engineering

Institute, says that XP is compatible with the Capability Maturity Model (CMM) [104]. He

states that XP and CMM can create synergy when XP focuses on engineering aspects and

CMM focuses on management aspects.

www.manaraa.com

 23

At the same time, many companies have enhanced their corporate-wide standard

software development process methodology to gain agility. Increasingly, each individual

project uses the standard process with some level of flexibility [105].

2.1.4.2 Applying Agility in the Telecommunications Industry

According to the experiences of pilot projects at Motorola and Nokia, extensive

tailoring was required to introduce XP in their organization. Motorola received consistent

and positive results from piloting tailored XP for four complex mission critical systems

[83], which consisted of 29 engineers operating over an 18-month period. Compared to the

“on-site customer” practice of XP, these pilot projects hired an experienced coach and their

technical domain expert acted as a customer because the real customer was not available.

Compared to the “small design” practice of XP, initial architectures were defined before the

first iteration because these projects were part of a large system release. These pilot projects

used design reviews and requirement verification reviews not only to ensure

maintainability but also to meet XP’s minimal document rule. Overall, the results from the

four pilot projects included positive morale, reduced learning curve, high productivity,

more test coverage, and comparable quality and maintainability.

Nokia’s several in-house methods are considered to be agile methods for large

organizations [86]. These methods utilize facilitated cross-team workshops with a

Community of Practice (CoP) theory to overcome the limitation of the agile method’s team

concept. This team concept is deemed insufficient for large or multi-team organizations.

2.1.4.3 Applying Agility in Government Projects

In the 2.2 Eclectic Software Development section, this proposal presents a framework

for balancing between plan-driven and agile methodologies for government software

development projects. Agile methodology is introduced into the process and management

www.manaraa.com

 24

of government contract projects [4, 35]. For example, the German government has

accepted agile strategy as one way to run projects with V-Model XT, a new official process

model [7], and the US government has published Request For Proposals (RFP) with

requirements to use Agile method. On the other hand, some studies discuss the challenges

of migrating from traditional to agile methodologies [38].

McMahon [106] identified the four conflicts and five recommendations from

observations of a prime contractor using a traditional method and a subcontractor using an

agile methodology in a government project.

Tuck, France, and Rumpe [107] state that agile methodologies have limited support for

large team, distributed team, subcontracting, large and complex software, and safety-

critical software. Most of those limitations are characteristics of government projects, as

shown in Table 6.

Table 6 Limitations of agile methodology in government projects

 Characteristics of

Government Project

(See Table 1,

Extracted from [45]

Home Ground of

Agile

(See Table 2 and 3,

Extracted from [31]

Limitations of Agile

(Exacted from

[107])

Team Interactions with

other departments

High degree of

freedom

Distributed

development

environments

Subcontracting

Large team

Product Difficulties to adapt

to change because of

scale and complexity

Potential difficulties

for high criticality

projects

Developing safety-

critical software

www.manaraa.com

 25

 Characteristics of

Government Project

(See Table 1,

Extracted from [45]

Home Ground of

Agile

(See Table 2 and 3,

Extracted from [31]

Limitations of Agile

(Exacted from

[107])

Limit scalability for

large project

Developing large,

complex software

This section 2.1 Software Development Methodology describes and compares

characteristics of popular plan-driven and agile software development methodologies. It

also shows that large projects, including those in the telecommunications and government

fields, increasingly consider agile methodology to take advantage of the effectiveness of

the time of delivery. However, some limitations of agile methodology are the nature of

government projects. Overall, the software development industry is depicted in Figure 15.

The next chapter, 2.2 Eclectic Software Development, will present an approach to

utilizing the effectiveness and reducing the limitations of agile methodologies for the

government software development environment.

www.manaraa.com

 26

Figure 15 Class diagram of software development methods

www.manaraa.com

 27

2.2 Eclectic Software Development

2.2.1 ESD Background

When project leaders of large-scale government software development projects select,

modify, or utilize any agile methodology or its practices, the ESD framework can serve as a

guide to balance between the agile and traditional methodologies within the confines and

structures of the tools, processes, methodologies, people, and leadership already defined for

the government projects.

ESD was initially developed in 2004 by a software development team at Northrop

Grumman Mission Systems for U.S. DoD projects. It is not a proprietary methodology. It

has been peer-reviewed [32] and well received at an international conference and at

Northrop Grumman [108]. Also, preliminary results from additional government projects

are promising. ESD was designed to support government projects even though it has been

applied in commercial projects. Additional studies are required to validate its effectiveness

in types of large-scale projects other than government projects.

This section provides an overview of ESD. ESD includes some general principles and

philosophies. It makes a valuable contribution as a useful guideline and reference

throughout the software development lifecycle. This section has been validated and refined

during this study.

2.2.2 ESD Executive Summary

The theory behind ESD is the selective use of the right tools, methodologies,

processes, and human resources by project leadership at the right time within the confines

and structures already defined for large-scale and contract-based government projects.

Characteristics of government projects are as follows:

www.manaraa.com

 28

Government software development projects require both technical interfaces and

political collaboration with systems from different departments, services, or agencies [45].

The selected methodology must harmonize with methodologies from the other

departments. The systems are often legacy systems and involve regulations and policies.

This harmonization characteristic is getting more attention because of current trends in

technology, such as net-centric, service-oriented, web services, and federal enterprise

architectures.

Government software development projects do not easily adapt to change. They

usually require a well-defined, planned, controlled, auditable, and tested project. The

government often has a set of predefined processes that the contractors must follow and

tailor. Change is often not embraced, especially, when each module (i.e., web services

provider or requester module) or task (i.e., requirement, development, or test) is delivered

from different contractors.

ESD has been enhanced to support the characteristics of government projects noted

above. When government projects consider any agile methodology or its practices to inject

needed flexibility, they do so to balance agile and plan-driven methodology and to perform

continuous process improvement. In such cases, ESD provides a pragmatic, not dogmatic,

framework. The following diagram provides a high level overview involving three steps:

www.manaraa.com

 29

Figure 16 Three steps of ESD

Step 1: Recognizing organization standard

Step 2: Assessing project factors

• Tools

• Methodologies

• Process

• People

• Leadership: Visionary, Technological, Functional, and Managerial

Step 3: Recognizing and responding to project circumstances

• Continuous integrations and milestone demonstrations: Gain a true picture of

the status, and open communication

• Ask simple questions

• Do simple mathematics: Often miss the forest for the trees

www.manaraa.com

 30

• Adopt management by walking around

Figure 17 zooms in on the center pentagon shape in Figure 16 and serves as a template

to evaluate the project. Using the ESD Pentagon, each agency, department, or contractor

assesses the project factors from its point of view. Within the same team, project leader,

technical team leader, and developers also can assess the project factors. Boehm and Turner

provide a framework to understand a project’s characteristics in order to select either plan-

driven or agile Software Development Life Cycle (SDLC) methodologies. The objective of

ESD is to provide a better framework for understanding a project’s characteristics and

thereby balance between plan-driven and agile SDLC methodologies. During the assessing

of the project factors, the ESD’s goal is to make the pentagon balanced. Utilizing agile

methodology and its best practices is not recommended unless the project is balanced for

the five factors among the different stakeholder groups. The sub-factors can be added or

removed by the practitioner. Also, critical success factors and proposed practices can be

collected at the same time.

www.manaraa.com

 31

Figure 17 ESD pentagon

Based on the preliminary results before this study, ESD

• Helps to inject needed flexibility

• Provides continuous process improvement

• Ensures success throughout the lifecycle

• Is easy to learn and implement

• Works well with existing processes and methodologies

2.2.3 Philosophy of ESD

In her article “How to Read a Business Book,” [109], J. Reingold states that managers

view business how-to books as a generalized approach rather than a specific solution for

their company. This suggests that a business manager needs to understand the key ideas

www.manaraa.com

 32

from various business books and add them to their own toolbox like a good auto mechanic.

Software development managers can apply this idea to treat software processes and

methodologies in a similar fashion.

The ESD approach introduces a concept of using the right processes, methodologies,

and tools promptly [32]. In order for ESD to be effective, the team requires a project leader,

who can provide an overall vision of the project’s direction as well as technical, functional,

and managerial leadership. The leader and team members need to recognize the problem,

and apply the proper methodology. They should avoid dogmatically adopting the popular

methodologies, hoping to find the silver bullet that will reward them with a productivity

improvement of magnitude.

The concept behind ESD is not new. Many projects might be already utilizing an

unstructured ESD approach without being aware of it. By choosing the combination of

methodologies that work best for projects, the team is applying a set of general principles

or philosophies of ESD. Software development engineers and managers often select and

use different portions of existing methodologies. This way of thinking about software

development methodology can be found in the previous studies reviewed below. Each one

presents slightly different approaches but shares the same philosophy and vision of ESD.

The most interesting fact is that agile methods, especially XP, foster the ESD idea because

they provide a set of best practices from which to select.

• Situational Method Engineering (SME): assembles method fragments into

situational methods to the project at hand utilizing a rich repository [14, 19]

o Dual-Agility method: uses method engineering to construct an agile method by
selecting method fragments with quick plug and unplug of the fragments; this
offers a high degree of flexibility [15]

www.manaraa.com

 33

• Living Software Development Process: provides a vision to support the

selection of process fragments at the starting of the project (static tailoring),

the reconstruction of process fragments during the project to support frequent

changes of the project’s environment and requirements (dynamic tailoring),

and a continuous improvement of an organization’s standard (evolutionary

process improvement) [13]

• Other Agile-influenced Hybrid Approaches

o Tailored Agile: applies agile practices into the existing process [17]

o Agile Process Tailoring and probLem analYsis (APTLY): combines techniques and
ideas from a process knowledge base of best practices and local experience [16]

o Situated process and quality framework: implements agile values and principles into
an organization’s standardized process of RUP and CMM [18]

The Harvard Business School’s Case Method provides students the experience of

solving complex problems by analyzing and resolving various business cases in a

controlled and compressed environment. In other words, students are refining their personal

problem-solving algorithms. Students are encouraged to be creative and draw from their

personal knowledge base to solve these problems. Future business leaders cannot expect to

be able to solve real-world situations working in the business environment by dogmatically

applying a specific financial theory. The program encourages students to create their own

understanding and strategies to solve future problems. This technique also can be applied to

software engineering programs. These programs need to emphasize that to be a successful

project manager, one must use judgment and eclectically select or apply the body of

knowledge of software engineering in an appropriate fashion and not blindly apply the

most popular methodology du jour.

www.manaraa.com

 34

2.2.4 Government Sector Contract-Based Projects

Software service providers in the public sector working on government projects are

contractually required to apply rigorous project management processes. The government

utilizes these processes to formally review and accept the progress of the project

throughout its lifecycle. Government contracting officers and their technical representatives

do not tolerate chaos. For example, government projects frequently cite several military

standards, such as MIL-STD-1521, MIL-STD-498, DOD-STD-2167, DOD-STD-2167A, ,

MIL-STD-1679, and CMM for well-defined, planned, controlled, auditable, and tested

projects [31, 48].

Agile methodology is beginning to be accepted for many government projects. As

noted above, for example, the German government accepts agile strategy as one way to run

projects with V-Model XT, a new official process model [7]. However, software

development contractors for large projects often find it difficult to conscientiously use

authentic agile methodology, which requires fundamental process changes in the public-

sector contract-based, mission-critical project. ESD supports a strategy for balancing

between plan-driven and agile methodology, which Boehm and Turner provide in their

book [31].

In addition to process controls within the project, the typical government system has

many interfaces with systems from different departments, services, or agencies, which also

requires orderly and controlled interface definition processes. Another level of complexity

is that these projects are not brand new products. They are retrofit projects, which are by

definition heterogeneous in nature. They may be built with several different programming

languages and technologies. The typical government contractor will be at some level of

www.manaraa.com

 35

CMMI, which means that it already has a set of predefined processes that the project team

must follow and adhere to.

Extending advantages of agile methodology into the realm of large complex projects in

the public sector is one of the basic objectives of ESD.

2.2.5 Three Steps of ESD

2.2.5.1 Summary

Wallin and Crnkovic state that ‘successful project execution’, ‘successful technical

solution’, and ‘promising business case’ are three important aspects for a software

development project [110]. Figure 18 shows the three aspects as a triangle. In addition, it

has to be on time and on budget, and it must provide the required functionalities.

Figure 18 Three aspects for successful software development project

Many software development methodologies tend to focus primarily on the project

execution aspect. ESD includes technical solutions and business cases to refocus its

perspective on the overall success of the project in line with the business goal, instead of

just on the project execution aspect.

The three steps of ESD application were shown earlier in Figure 16. The first step is to

recognize the best practices and constraints placed on the project by the standard processes

of the governing organization, e.g. corporation, program, or government. The second step

is to assess the project relative to the five factors of tools, methodology, processes, people,

www.manaraa.com

 36

and leadership. The third step is to recognize in a timely manner and respond properly to

the project by applying simple techniques, such as milestone reviews, simple questions,

simple mathematics, and Management by Walking Around (MBWA).

2.2.5.2 Step 1: Recognizing Organization Standard

In order for a methodology to work on a public sector software development project, it

must work within the confines and structures of the processes and procedures already

defined for the contractor organization and the host program. For example, SEI-CMMI is

widely adopted in the public sector contracting community. By definition, the company has

to have a set of corporate procedures, processes and guidelines. The programs (contracts)

of these companies adopt and tailor the corporate guidelines to the program. The project

team is expected to adhere to the program level guidelines and tailor them to its specific

project as necessary.

The ESD approach to integrating the CMMI processes and procedures is to accept

them with open arms and integrate the processes into the everyday work environment.

2.2.5.3 Step 2: Assessing Project Factors

After the organization standards are recognized, the team needs to define critical

success factors and risks by assessing the project. ESD recognizes that software

development is a harmonized activity of tools, methodologies, processes, people, and

leadership. Figure 19 shows these five factors in a pentagon configuration.

www.manaraa.com

 37

Figure 19 Five major factors in software development

Various tools are available to complete a software development project. Tools are

often referred to as technologies, program languages, COTS products, architecture, or

development frameworks. Mechanics and carpenters understand and practice the saying

“Use the right tool for the job” every day. Whereas the saying “Give a boy a hammer, the

world becomes a nail” shows that naive or dogmatic practitioners tend to misapply tools in

a given situation.

The software engineering field provides various methodologies including Analysis and

Design, Software Development Lifecycle, Process, Quality, Requirements, Configuration

Management, Testing, and others to capture and share the best practices.

Processes and procedures help in repeating a series of steps. They do not guarantee a

successful outcome. If the procedures were flawed in the first place, and there is no

corrective activity, one will repeatedly produce the wrong product. Therefore, continuous

process improvement is as critical as the well-defined process in the first place.

www.manaraa.com

 38

While traditional software development solutions tend to focus on methodologies and

processes, agile methodology focuses on the other two factors of people and leadership.

Agile methodology involves incorporating people as a key factor for better results.

Qualified people are an essential key for good products.

ESD depends on leadership for software development projects. A success of the

project depends on not only the good team but also leadership. By providing technical,

functional, managerial, and visionary direction, effective leaders recognize and encourage

qualified people to perform at their best [111]. Effective leaders pay attention to their team

members and ensure that they are trained, guided, and appreciated for their efforts. An

effective leader, not necessarily a technical guru, leads a team to success even with the

imperfection of real-life projects [112]. The success of a software project depends on the

qualifications of the project leaders, who must have theoretical knowledge and practical

experience [113]. Table 7 compares the six leadership roles from Computer Sciences

Corporation [114] and four leadership types from ESD.

Table 7 Leadership models in information systems/information technology

CSC ESD

Chief Architect Technical

Product Developer Functional

 Change Leader

Chief Operating Strategist Visionary

Technology Provocateur

Coach Managerial

In the real world, good leaders are hard to find. They are even harder to train. Effective

leadership can be performed or contributed by more than one manager within a team. It can

www.manaraa.com

 39

come from project managers, program managers, software development managers, team

leader, or senior developers.

2.2.5.3.1 Tools

Selecting the right tools is imperative to increase productivity. It includes technologies,

architecture, frameworks, and tools. For example, one case study says that 80 percent error

reduction and 40 to 80 percent of code reduction was achieved by its application

framework [115]. However, “right” is a very subjective word. The team must understand

that the recommended technical solution must assist to certify the success of the current

job. To perform an objective evaluation, evaluation criteria [116] or checklists [117] can be

used. Also, prototyping, a trade study, or Decision Analysis and Resolution (DAR) can

help in the selection process.

The list of tools in Table 8 is an example of tool usages from one of the Java web-

based application development projects in the U.S. DoD. Literally countless tools are

available in the market, waiting to be selected. Therefore, software managers and team

members should be capable of understanding what kind of tools the projects needs and

equipping the project with a collection of harmonized tools, not just with a lengthy list of

non-integrated tools.

Table 8 Tools selection example

Category Tools

Java IDE JetBrains IntelliJ IDEA, Eclipse

Database Oracle

UML Modeling Borland Together, IBM Rational Rose*

Database Modeling Oracle Designer

Database Access Quest TOAD

OR Mapping Hibernate

XML Development Altova XMLSpy

Framework
Apache Struts, Enhydra, Jcorporate Expresso**, Apple
WebObjects**

Application Server Caucho Resin, Tomcat**, BEA WebLogic*, IBM WebSphere*,

www.manaraa.com

 40

Category Tools

Jboss*, Microsoft IIS

Web Server Apache

Business Intelligence Cognos, Business Objects Crystal Report

Build Management Jakarta Ant

Logging Log4J

Unit Test JUnit

Performance Quest Jprobe

Object/Xml binding JAXB

Web Services Apache Axis

Template Engine FreeMarker, Velocity

Wireless J2ME*, RIM BlackBerry**

Source Control PVCS Version Manager, CVS*

Defect Tracking PVCS Tracker

Requirement Mgt Borland Caliber

Regression Test Mercury WinRunner

Test Management Mercury TestDirector/QualityCenter

Help Desk Mgt BMC/Remedy Magic Service Desk

On-line Help RoboHelp

PKI Digital Signature DBSign

CAC Middleware ActiveCard, NetSign

* Evaluated, ** Prototyped

After selecting the tools, frameworks, and other sub-systems, the team establishes a

central repository. The repository stores experiences for reuse to prevent duplicated efforts

or repeating of common problems and eventually to assist experienced-based process

improvement [117, 118]. The team needs to create knowledge bases within the repository,

outlining how to set up the development environment and utilize it with coding standards

and standard operating procedures (SOP). This is crucial for diminishing the learning curve

of new developers who may be subsequently added to the project and also for assisting the

maintenance team that follows. Recently, low-budget Web 2.0 collaboration tools such as

“Wikis” are becoming popular [119].

2.2.5.3.2 Methodologies

As software engineering encompasses many areas, various types of methodologies are

used. To efficiently balance agile and plan-driven methodologies, other methodologies

www.manaraa.com

 41

from various software engineering fields have to be evaluated. For example, Software

Development Life Cycle (SDLC) methodologies include Waterfall, Spiral, Prototype,

RAD, RUP, and Agile. Analysis and design methodologies include Structural [120],

Declarative, Object Oriented [121], and Service Oriented Architecture (SOA). Process

methodologies include ISO 9000, and SEI-CMM. Requirement, configuration

management, testing, and other areas in software engineering have their own

methodologies.

The purpose of methodology is to capture the best practices and to share with others

those best practices. The intent is to communicate complex ideas between customers and

developers. When choosing a methodology, it is imperative to consider both sides of the

coin. On one side is technical understanding and on the other is helping the customer

visualize and understand the end product of the project. If the developers employ

methodologies only to assist themselves in understanding the problem without helping the

customer understand the resulting system, then the project will inevitably end up in a

finger-pointing exercise, where the contractor and customer argue over their different

understanding of requirements or designs. Architects have been solving this problem by

progressing from blueprints to artist renderings of the building façade to 3-D scale models

to the use of virtual reality walkthroughs. As Figure 16 illustrates, one of three aspects of a

successful software development project is a successful business case. The project team

does not dictate success in this area. The customers or business owners determine success

or failure. If a project team blindly and dogmatically follows methodology without

considering its customer’s ability to understand the output from the chosen methodology,

then surely there will be disconnections at the end of the project.

www.manaraa.com

 42

2.2.5.3.3 Processes

Software development is a complex process, and process maturity fosters performance

improvement associated with quality, time, and productivity [122]. The software process is

the set of methodologies and technologies to model (process modeling), support (process

execution), assess (metrics and empirical studies), and improve (process improvement)

software development activities. While the software development lifecycle methodology

delineates the process, the software process defines a precise course of action [123]. The

team should establish project specific processes that are within the structure of the overall

corporate and program processes and the selected methodologies. These processes should

be designed to reduce conflict, allow for repeatability, enhance management control, and

allow the team to work smart and as a cohesive unit. A technically oriented project leader

can look at this as designing and programming systems for human-based computing

devices instead of silicon-based devices. In other words, the project leader plans people’s

activities under the name of processes.

The popular process quality model includes SEI-CMM and the ISO 9001 standard, and

the popular process improvement method includes SPICE and IDEAL [123, 124].

2.2.5.3.4 People

People are the most important asset across industries for a company’s success [125]

and the software development industry cannot be an exception. ESD uses an extended

definition of people, which includes all stakeholders in a project.

First, often the team structure in the public sector project is just given to the project.

For example, agencies and departments join the project based on the authorization of a

decision maker at a higher level. Also, the project generally does not get to hand-select the

www.manaraa.com

 43

team members who work on the project. It is important for the project leader to observe,

train, and test the capabilities of each agency and contractor and member of them.

Second, each SDLC methodology requires different skill sets of people. As Table 2

provides, the agile method demands a richer mix of higher-skilled people. The information

technology industry has experienced a high turnover rate of employees, and the higher-

skilled people drive the rate upward. In fact, recognition and encouragement of middle-

level-skilled people are essential to have stable supports in the software development

industry [126].

Third, it is essential to train the stakeholders, especially customers and development

team members, in their use of the tools, process, and methodologies. All team members

must be drilled on the use of development tools, the configuration management procedures

and tools, and any other procedures and methodologies that they must be adhere to. As with

a set of golf clubs in a golf bag, the project leader switches the training styles in different

situations. That is the same philosophy used in ESD’s eclectic approach. During training,

different leadership styles can be applied [127]. Sometimes it requires the project leader to

sit with the other team members individually to observe them carrying out the tasks and

procedures. This is analogous to drill sergeants watching recruits cleaning their weapons in

the military.

Fourth, it is important to note how the stakeholders accept the changes. It is critical

that the stakeholders and development team members are well informed and support the

changes. Good people management skills will help to focus on the goals. People

management practices of successful organizations include sustaining employment security,

hiring the right people in the right place, organizing work into teams, providing

www.manaraa.com

 44

comparative compensation, and more [125]. Those management practices can be applied to

software development organizations.

2.2.5.3.5 Leadership

Leadership assessment, the most difficult for any team, requires the team to look in the

mirror and determine if the team has the proper skills, capabilities, and training to lead the

team into this construction project. It is very difficult to perform this self-evaluation and be

honest with oneself.

In order to simplify the self-assessment, ESD has identified four sub-factors of

leadership in software development projects: visionary, technical, functional, and

managerial leadership. Those four sub-factors of leadership need to be performed by the

team leader or other staff members who can provide any absent factors.

First, visionary leadership is critical for long-term government projects. Software

development projects need not only managers but also leaders who have vision. Managers

produce plans for stability and leaders provide vision for changes, and both are

complementary [128]. Table 9 describes management and leadership. A vision must serve

the interest of stakeholders and must be easily translated into a realistic competitive

strategy. According to one of the conceptual frameworks about vision [129], the core

ideology includes core values (what we stand for, i.e., Imagination: Walt Disney) and core

purpose (why we exist, i.e., To make people happy: Walt Disney), and the envisioned

future includes long-term goals (i.e., Become the Harvard of the West: Stanford University,

1940s) and vivid descriptions.

Table 9 Management and leadership [128]

www.manaraa.com

 45

 Second, technical leadership is critical because software development utilizes various

technologies. Since the industry introduces newer technologies so rapidly, it is not unusual

that many project leaders have not been exposed to leading-edge technologies after the

project leader was promoted to the leadership position. In this case, unless the leader can

learn the technology in a timely manner, the leader must have staff members who can

support the team to avoid difficulties arising from a lack of technical leadership.

Third, functional leadership is about domain knowledge of the business process of the

government agency. When a team develops software for a government agency, it is critical

to have a sufficient understanding of how the agency operates its business and what

policies and regulations relate to this new software.

Fourth, managerial leadership is about management for project execution. When a

software engineer is promoted to the project leadership position on the basis of his

technical abilities, the organization must train him or her well for managerial skills, such as

project management, people management, schedule, and budget.

Great programmers, like great craftsmen, will create great software. A great

programmer with great tools will create great software faster. However, complex projects

are not single-developer projects and require a team of programmers and a manager. In a

team environment, a bad manager will trump great programmers and cause bad software to

be produced later. Leadership determines if the human system works or not. Leadership

www.manaraa.com

 46

creates the environment in which developers operate. In combat, failures in leadership get

people killed. In software development, failures in leadership result in poor quality

software delivered late or never. In both situations, that which is lost by lack of leadership

is irretrievable.

2.2.5.4 Step 3: Recognizing and Responding to Project Circumstances

2.2.5.4.1 Overview

The team leader must be able to lay out a project plan that is realistic in terms of

organizing the work of the development team and the planned duration of tasks. The

project plan must be meaningful to the external program control team and to the project

manager and developers. Project Portfolio Management (PPM) software has been

developed to offer a reflection of the reality of the project. Some project management

techniques help leaders to stay with the reality and avoid being sucked into the looking

glass and living in the reflection.

For an enterprise to adapt to a rapidly changing business environment, Haeckel [130]

suggests “sense-and-respond” (SaR) over “command-and-control.” SaR organization

performs “sense-interpret-decide-act” processes. SaR enterprise monitors trends and acts in

a timely manner by using effective decision-support tools [131]. The third step of ESD,

recognizing and responding to project circumstances, is utilizing this SaR approach,

applying it at the software development team level instead of the enterprise level.

Once the project starts, the project leaderships must stay in touch with what is actually

happening on the project, regardless of the development methodology, and lead the project

team to create the right solution within the constraints of the project. In order to accomplish

this, the project team must recognize risks, issues, and otherwise unproductive practices

and formulate timely responses to any of these negative events. The project leader must

www.manaraa.com

 47

support the team by recognizing the problems and taking the proper actions. Although there

are many traditional ways of identifying risks and issues (e.g., weekly reviews and formal

risk assessments), ESD suggests four simple yet very effective ways for the identification

and recognition of problems for effective project management in addition to the formal

governance process. The first is early and continuous integration of software sub-systems.

The second is by asking simple and direct questions. The third is by doing simple

mathematics. The fourth is management by walking around. These four management

principles and practices, which are selected from many others, work efficiently and

effectively in contemporary software development projects, especially in the government

sector.

2.2.5.4.2 Continuous Integrations and Milestone Demonstrations

This practice combines a milestone concept from plan-driven methods [132] and a

continuous integration and reflection of the product concept from agile methods. The best

way to determine the health of any systems development project, either software or

hardware, is to see the pieces of the system work together as early as possible. When the

project leader defines the project schedule, he or she should plan for periodic integrated

milestone demonstrations for the whole development team. The frequency of these

demonstration or reviews must be appropriate for the overall length of the project and the

development pace of the team. Ideally, the whole team would jointly review the

demonstration, and the project leader should invite the customer representatives to observe.

Although there are risks associated with having failures in front of the customer, the

benefits of gaining a true picture of the status of the project and opening the

communication channels between team members far outweigh the risks. According to

previous studies from OECD, the United Kingdom, and Norway [133], user involvement is

www.manaraa.com

 48

considered an important key, and the lack of end-user involvement in government IT

projects provides more challenges than in private IT projects.

Instead of depending on second hand status reports as a diagnostic tool to determine

the project health, a team can observe the accomplishment of their project. The team can

compare between what they have reported and what they have actually accomplished. The

team can see the true accomplishment of the whole team. Every team members can

understand who is ahead of schedule and who needs help. The value to the project leader of

stakeholders actually seeing live demonstrations of the sub-components working together

on a periodic basis cannot be overstated.

The added benefit of having the whole development team attend the review is that

during a milestone demo, the team discusses not only what it has accomplished but also

what it needs to do for the next milestone. The whole team takes ownership of the process

and takes pride in the outcome of the project. The whole team knows the objective, risks,

issues, and other obstacles that must be overcome to achieve the objective.

2.2.5.4.3 Ask Simple Questions

“Asking the right question at the right time,” a critical technique in education and

medicine [134], has been applied in the software engineering field, for example, during

design reviews [135], software measurement [136], or system acquisition [137].

A good way to determine the quality and depth of understanding is for the project

leader to ask team members simple but insightful questions. When simple answers do not

come back from the team members, it usually indicates the team does not fully understand

the situation or the problem. When there is no good answer, the project leader must coach

or guide the team member in a professional manner.

www.manaraa.com

 49

Although these questions are simple in nature, they should be insightful and relevant to

the problem at hand. The team leader must be wise enough to identify the weakness in the

design and process to know which simple questions are appropriate.

Simple questions help the team to prevent any last-minute surprises. Often the

development leader does not have the same technical proficiency of knowledge as the

technical team. However, if management is able to ask good simple questions, then

management may be able to eliminate the communication gaps. However, this technique

has to be used properly. Some team members can be defensive, resulting in less than

positive outcomes.

2.2.5.4.4 Do Simple Math

The forest is often missed for the trees. When planning or assessing project health, the

team should use simple mathematical equations to look at the forest. All too often,

managers will be drawn into the forest and focus on the complexities of the trees and miss

the whole point of navigating through the forest. This simple calculation technique can help

to avoid prospective disasters in software projects [138].

Basic ratios are very good simple mathematical equations to start with. For example,

assume one is working on a four-week development project. The task has 100 programs to

be developed. The development team has two programmers on it. The simple math at the

planning stage would be that each developer would have to develop and unit test 50

programs in the four weeks or 12.5 programs per week, or 2.5 programs per day. Without

asking about level of complexity of the individual programs, the project manager already

can ask whether the pace is realistic for the developers to sustain. If not, then this is a good

time to ask for additional time or resources to reach a sustainable pace. The manager can

quickly determine the status of the project during execution by using this simple math.

www.manaraa.com

 50

One simple equation to remember is that at a given point in time on the project, each

day in the future becomes an increasingly significant percentage of the remainder of the

project. In other words, if you have two weeks left in the project, then the first day of the

two weeks is 10% of the remaining project. On the second day, it becomes 11.11% or 1/9,

and the third becomes 1/8, and so on. Once the project reaches this point, it is very

important for the project leader to assess the current situation and wisely utilize the

remaining time.

2.2.5.4.5 Adopt Management by Walking Around (MBWA)

MBWA means being in touch with customers, suppliers, partners, and one’s own

people for face-to-face listening, coaching, and facilitating [139]. This method is to help

managers obtain the real-time status of the nature of the project. By walking around and

interacting with the team members who actually do the work, a manager will be able to

hear first-hand the real problems and successes of the project. In addition, by walking

around and interacting by two-way communication with the customers being served, the

manager will receive real feedback [140].

By walking around, a leader can lead from the front. The team members can see the

leadership among the troops, taking interest and truly understanding the situation that

everyone is facing. MBWA also creates opportunities for management to have positive

interactions with the team, whereas a manager who hides in his office will tend to have

only negative interactions with the team. In such a case, the only time he will want to see

the team is when something is wrong. This type of behavior does not build trust or promote

bonding between management and the development team.

Although weekly status reports are essential documents of project status, MBWA

along with the other techniques enables project management to obtain the true gauge of the

www.manaraa.com

 51

status of the project and to improve the relationship between management and the team. A

supplemental activity of MBWA is breaking bread with the development team. ESD has

found that having team lunches after the scheduled milestone reviews is a good way to

improve bonding between team members and the leader.

MBWA is not limited to one’s own people, but includes customers, suppliers, and

partners. It supports the large government software development project, which often

involves team members and customers from other departments as well as partners and

suppliers in remote locations. However, when traditional MBWA may be not feasible for

distributed teams or virtual teams [141], the team can utilize other techniques, such as

continuous integration and milestone demonstrations.

2.2.6 Informal Assessment

This section provides a summary of an informal assessment that applies ESD to an e-

government web application project for the U.S. Department of Defense [32]. Figures

included in this section illustrate how ESD can be applied throughout the lifecycle. Table

10 presents a summary, Figure 20 shows a lifecycle diagram, and Figure 21 illustrates the

changes in the ESD Pentagon throughout the lifecycle.

Table 10 shows five project factors in the first column, each assessed by four selected

sub-factors in the second column. These sub-factors are rated from 0 to 3, indicating levels

of preparedness: None (0), Plan-Driven (1), Hybrid (2), or Agile (3). Along with the rating,

descriptions of the events that render such ratings follow. Each event includes an indicator:

positive (+), neutral (=), or negative (-). This case study has three assessment checkpoints,

one at the beginning of project, one after the design review, and one before the system

testing. Table 9 presents them in the third, fourth, and fifth columns. The table also charts

recognitions and responses from the project leaders in the categories of Continuous

www.manaraa.com

 52

Integration (CI), Simple Questions (SQ), Simple Mathematics (SM), and Walking Around

(WA).

Table 10 Summary - Case Study A [32]

Project
Factors

Sub-Factors Recognizing
organization

standard

Assessing project
factors (System
Requirement &
Design Review)

Assessing
project factors

(Test
Readiness

Review)

Recognizing
and responding

to project
circumstances

Leadership

Visionary 2 No change No change N/A
+ A new project
manager and a
technical team
leader are highly
motivated.
+ The new
manager (highly-
paid contractor)
has solid industry
experiences.

N/A N/A

Technical 1 No change 2 N/A

= The technical
team leader is
familiar with
existing Java
framework.

N/A + Three team
members, who
became experts
for the new
framework, are
promoted.

Functional 2 2 No change WA: The leaders
found there are
strong barriers
between
technical team
and functional
knowledge team

+ The technical
team leader,
product manager,
and requirement
engineer are very
familiar with the
functional area.

+ Prototyping is
used to solve the
difficulty in
visualizing the end
product from the
requirements

No change

Managerial 0 1 No change N/A
- The new manager
and new team
members are not
trained for the
organizational
standard.

+ The new team is
provided training
for organizational
standards.

No change

People Structure 0 1 2 WA: The
development
team and system
test team
complain to each
other.

- There is poor
collaboration
among teams prior
to their own phase
(i.e., requirement,
development, or
system testing).
- 70% of team
members are newly
hired.

+ Integrated
Product Team is
used to solve the
difficulty of team
communication
across
organizational
teams.

+ Theory W is
applied to make
everyone happy.

Skill Set 1 No change 2 CI: The team
found that some
developers are
too slow to learn
the new
framework.

= The team has
Java skill set with
existing
technology.

No change + Pair
Programming
(from XP) is
applied to
perform timely
domain and
technology
knowledge
transfer timely.

www.manaraa.com

 53

Project
Factors

Sub-Factors Recognizing
organization

standard

Assessing project
factors (System
Requirement &
Design Review)

Assessing
project factors

(Test
Readiness

Review)

Recognizing
and responding

to project
circumstances

Training 0 1 No change N/A
- There is no
training plan due to
time limitation

+ Vendor training
and OJT are
provided.

No change

Acceptance 1 2 No change N/A
= The organization
only worked with
Waterfall. The team
members are not
familiar with non
Plan-Driven
Method.

+ The team
appreciates new
practices because
it fosters the
winning spirits

No change

Methodologies Requirement 1 No change No change N/A

= The full lifecycle
is Waterfall, and
the current
schedule goal is 5
months, which is
very intensive.

= Joint Application
Design sessions
(from RAD) are
hosted by
representatives of
real users, not just
the requirement
analyst. It is used
to resolve
communication
issues.

No change

Analysis &
Design

1 2 No change N/A

= Waterfall + Prototyping No change

Development 1 2 No change CI: Monitor real
progress = Waterfall + Prototyping

+ Non-Serialized
activities (from
RUP) are used to
resolve schedule
delays due to
serialization of
activities.

+ Continuous
Integration and
milestone demo
with
stakeholders are
used.

Test 1 No change 2 SQ: The
Customer wants
to avoid any last-
minute surprise.

= Waterfall No change + Pilot Site
Testing is used
to prevent any
last-minute
surprises.

Tools Tool 1 No change No change N/A

= Existing tool No change No change
Framework 1 2 No change N/A

= Existing
framework

+ New framework
increases response
time for changes

No change

Architecture 1 No change No change N/A

= Existing
architecture

No change No change

Technology 1 No change No change N/A

= Java web-based
application

No change No change

Process Model 1 No change No change N/A
= CMM Level 3 No change No change

Execution 1 No change No change N/A

= CMM Level 3 No change No change

Assess 1 No change No change N/A

= CMM Level 3 No change No change
Improvement 1 No change 2 WA: The project

www.manaraa.com

 54

Project
Factors

Sub-Factors Recognizing
organization

standard

Assessing project
factors (System
Requirement &
Design Review)

Assessing
project factors

(Test
Readiness

Review)

Recognizing
and responding

to project
circumstances

= CMM Level 3 = Collective Code
Ownership

+ Continuous
Integration (from
XP)

leader hears that
it takes so long
to change a line
of code

WA: The project
leader hears that
it is hard to
measure the
progress.

WA: The project
heard that “the
beginning of an
integration test
phase is usually
stressful”

Critical
Success
Factors

N/A The existing
process and
framework can’t
meet the deadline.
The project wants
new frameworks,
process or
methodology to
accomplish the
schedule.

The project has to
resolve
communication
gaps. Each
stakeholder has
different
interpretation and
expectation of the
product.

The project
applies
continuous
Integration and
pilot test
techniques to
optimize the
schedule.

SM: The existing
process and
framework can’t
meet the
deadline.

Figure 20 Lifecycle – Case Study A [32]

Figure 20 illustrates the inter-relationship of the selected practices used on this project

over time. The organization has performed CMMI level 3, and follows a conventional

www.manaraa.com

 55

Waterfall methodology. This application uses ESD utilizing mock-up screens from

Prototyping; Joint Application Design (JAD) sessions technique from Rapid Application

Development (RAD); non-sequential activities from Rational Unified Process; and Theory

W from the WinWin Spiral model. Also, XP practices such as continuous integration,

collective code ownership, and pair programming are applied.

In Figure 20, JAD activity is iconized as a musical note (JAD sounds like JAZZ);

Mock-Up Screens are iconized as a circular arrow; Theory W, “make everyone a winner,”

is shown as a flat-wide box on the top, covers the entire lifecycle, and shows a concept of

non-sequential activities; pair programming is shown as a two-person icon, continuous

integration is shown as a series of diamond milestone icons; shared code ownership is

shown as an open box; IPT is shown as a flat-wide box on the top; and pilot test is shown

as a bar chart icon.

Figure 21 shows the results of project factor assessment at specified checkpoints. The

initial assessment diagram demonstrates that the project has three missing factors in a plan-

driven layer. It shows that the project requires work on the fundamental areas before

implementing any agile principles. The interim diagram, assessed after the design phase,

shows that the missing factors are enhanced. It indicates that the project now has a good

foundation to accommodate agile practices and principles. The final diagram, assessed

before the system test phase, indicates that the project promotes itself by balancing plan-

driven and agile methodologies. This Pentagon chart is visually accessible and provides

significant benefit when the project leader keeps monitoring the chart until the project is

fulfilled.

www.manaraa.com

 56

For example, when the pentagon form displays negative or no positive movements

while the team is trying to improve the sub-factors, it indicates that the project manager

needs help. The project may be running into problems.

www.manaraa.com

 57

 Figure 21 ESD Pentagon – Case Study A

www.manaraa.com

 58

2.2.7 ESD Agile Best Practice Checklist

ESD provides the Agile Best Practice Checklist in Figure 22 and Agile Program

Assessment Form in Table 11 to select agile best practices, thereby allowing a balance

between Agile and traditional methodologies. The Agile Best Practice Checklist helps to

evaluate agile best practices for government software development projects. This checklist

provides a list of best practices from popular agile methods in addition to commercial,

scaling, and government agile best practices. This checklist can be customized to a specific

project.

The checklist and form can be used to review multiple best practices based on various

factors. This enables the developer or manager to drill down and select the right set of best

practices for the program.

www.manaraa.com

 59

Figure 22 ESD Agile Best Practice Checklist (version 4.0)

The first column categorizes five project factors (People, Methodologies, Tools,

Process, and Leadership), and each project factor will be assessed by customizable sub-

factors in the second column.

In the third column, select one of (Initial (1), Managed (2), Defined (3), Quantitatively

Managed (4), or Optimizing (5)) to rate these sub-factors, assigning a rating for each sub-

factor in your project.

In the fourth and fifth column, enter a description of challenges your team faces and

the corresponding actions your team will take. Input will be continually updated and

revised. Multiple challenges and actions can be entered.

www.manaraa.com

 60

Table 11 Agile Program Assessment Form

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

People Structure Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Skill Set Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Training Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Acceptance Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Methodologies Requirement Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

www.manaraa.com

 61

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Analysis and

Design

Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Development Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Test Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Tools Tool Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Framework Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Architecture Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

www.manaraa.com

 62

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Technology Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5))

Process Model Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Execution Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Assess Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Improvement Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Leadership Visionary Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

www.manaraa.com

 63

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Technical Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Functional Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

Managerial Initial (1)

Managed (2)

Defined (3)

Quantitatively Managed (4)

Optimizing (5)

2.2.7.1 Introduction to Agile Software Programming

Agile software development methodologies are based on common motivation,

manifesto, and principles. They target high quality products with lower cost, which also

aligns with the customer’s needs and goals. The program understands the common

motivation, manifesto, and principles, and develops the program-specific measurable

objectives.

2.2.7.1.1 Motivation

The general motivation in adopting Agile methodology to the organization includes

delivering a working product continuously in the shortest time possible, working in a

highly productive team, ensuring quality and controlling cost.

The software programming agility provides the following business benefits:

• Continuous delivery of a working product

• High productivity

• High quality

www.manaraa.com

 64

• Cost-saving opportunity.

2.2.7.1.2 Objectives

The following are the sample objectives of utilizing the Agile software development

best practice:

• Improve customer satisfaction by being more flexible with respect to

incorporating requirement changes while still understanding their impact

• Reduce cost by shortening the integrate-build-verification test cycle

• Improve quality by reducing the response time to resolve the defects

• Integrate agility with program specific CMMI best practices

• Deliver working solutions that meet the needs and expectations of

stakeholders through continuous collaboration

2.2.7.1.3 Manifesto

In February 2001, 17 leaders of the Agile methodologies met and developed the

“Manifesto for Agile Software Development (http://www.agilemanifesto.org):

2.2.7.1.4 Principles

The principles of the Agile software development

(http://www.agilemanifesto.org/principles.html) support the philosophy of the manifesto.

 2.2.7.2 Popular Agile Software Development Methodologies

As Agile software development gains popularity, process frameworks such as Scrum,

best practices methods like XP, and other Agile software development methodologies are

implemented to help deliver business value. The next section describes each method and its

benefits. The program will adopt the selected best practices from Scrum and XP.

www.manaraa.com

 65

2.2.7.2.1 Scrum – Process framework

Scrum derives from the rugby word scrummage, which can be described as a team of

developers who have a well-defined incremental role with a specific task to complete. In

software development, this lightweight process can be utilized to use iterative, incremental

best practices. Tasks are structured in cycles called sprints and a list of tasks for each sprint

is called backlog. At the end of each sprint, project milestones can be met. This is discussed

daily during short scrum meetings. The team discusses its accomplishments and obstacles

for current tasks. The following is a high-level framework of Scrum. More information on

Scrum can be found at http://www.scrumalliance.org/pages/what_is_scrum

• Planned Meetings
1. Sprint planning
2. Daily Scrum
3. Sprint review

• Roles
1. Product Owner
2. Scrum Master]
3. Self-organized team

• Artifacts:
1. Product backlog (a list of tasks)
2. Sprint backlog
3. Burn-down chart

Figure 23 illustrates the Scrum process flow.

www.manaraa.com

 66

Figure 23 Scrum Process Diagram [77]

2.2.7.2.2 eXtreme Programming

XP programmers plan, design, develop, test, and release in short development cycles

throughout the development lifecycle by a small team with customer collaborative

involvement. A quick overview of XP is available at

http://xprogramming.com/xpmag/whatisxp.htm. Key practices of XP include:

• Planning game: Predicting accomplishment for the given schedule rather than

predicting schedule for the given scope.

• Small releases: Releasing tested software every iteration and on a frequent

basis

• Metaphor: Developing a concept of understanding

• Simple design: Building software with simple designs throughout the lifecycle

• Test-driven development: Building test cases and then coding instead of

coding and then building test cases

www.manaraa.com

 67

• Refactoring: Refactoring to improve the design of existing code

• Pair programming: Pairing two programmers to collaborate

• Continuous integration: Fully integrating code changes at all times

• Collective code ownership: Improving any code at any time by any pair of

programmers

• No overtime

• On-site customer: Having a customer available whenever they are needed to

answer questions and to provide direction

2.2.7.2.3 Other Agile Methods

Various methodologies and practices have been developed to adopt continuous

changes in software development seamlessly. Table 12 provides an overview of other Agile

methodologies.

Table 12 Overview of Other Agile Methods

Agile

Methods

Overview Key Practices and Process

Crystal A framework for software

development methodology selection

based on staff size, system criticality,

and project priority

ASD Accepts continuous changes by

continuous adaptations

“Speculate-Collaborate-Learn”

lifecycle, which replaces the “Plan-

Design-Build” lifecycle

FDD Features object-oriented based

development of components with

Five steps focused on design and

development:

www.manaraa.com

 68

Agile

Methods

Overview Key Practices and Process

collaboration between domain experts

and programmers.

Refer Figure 13

DSDM Project delivery framework with

iterative and incremental steps, which

takes less time and discovers and

corrects problems earlier than the

waterfall method.

Seven steps: Refer Figure 14

Lean

Software

Developmen

t

Improving the delivery of software

while minimizing the impact on

processes.

The principles of Lean are:

• Add value to the

Customer

• Create Knowledge

• Respect People

• Build integrity

• Deliver Fast

2.2.7.3 Additional Commercial Agile Best Practices

This section provides an overview of the additional commercial best practices.

Besides the best practices from the popular Agile methods, the program also adopts

some additional best practices, which have been introduced as lessons learned from the

adapters and implementers of Agile methods on many projects. These additional

commercial Agile best practices are categorized as project management, technical, and

measurement areas, and work well with best practices from the popular Agile

methodologies listed in Section 2.2.7.2 Popular Agile Software Development

Methodologies.

www.manaraa.com

 69

Management plays the important role of ensuring that customer values have been

addressed throughout the duration of the life cycle by assessing progress indicators and

encouraging the project sponsor’s involvement as early and as frequently as possible.

Technical best practices align themselves with test and build iterations, which can foster

continuous improvement in the process to deliver on time. By using the measurement, the

team can understand impact of any requirement change requests.

2.2.7.3.1 Management

The following are additional commercial best practices for the project management

area.

• Early delivery of customer values

• Clear visibility of progress (that is, progress indicator or Collaboration Web

site)

• Early and frequent customer involvement

• Continuous improvement

• Demo at end of iteration.

2.2.7.3.2 Technical

The following are additional commercial best practices for the technical area.

• Test automation

• Build automation

2.2.7.3.3 Measurement

The following are additional commercial best practices for the measurement area.

• Iteration Burn-down: This is a working-level progress measurement, for use

by individual teams and team leads. Figure 24 is an example of an Iteration

Burn-Down chart showing the work remaining (hours).

www.manaraa.com

 70

Figure 24 Sample Iteration Burn-down Chart

• Velocity (Requirement per iteration): A simplified chart showing velocity for

one team in terms of requirement per iteration. Figure 25 is an example of a

Velocity chart showing the number of successfully delivered requirements per

iteration.

www.manaraa.com

 71

Figure 25 Sample Velocity Chart.

• Product Burn-down / Product Backlog Progress Indicator: As the example in

Figure 26 illustrates, the Product Burn down chart shows progress towards

completing the requirement in the product backlog.

www.manaraa.com

 72

Figure 26 Sample Product Burn-down Chart

• Estimation effectiveness

o Iteration completion trends: Figure 27 is an example of an Iteration
Completion Trends chart showing number of requirements differed per
iteration.

www.manaraa.com

 73

Figure 27 Sample Iteration Completion Trends Chart

o Iteration task growth: Figure 28 is an example of an Iteration Task Growth
chart showing number of requirements added per iteration.

Figure 28 Sample Iteration Task Growth Chart

• Other traditional measures.

2.2.7.4 Scaling Agile

This section provides an overview of the Scaling Agile, also known as Enterprise

Agile, best practices.

Best practices in the section 2.2.7.2 Popular Agile Software Development and

additional best practices in the section 2.2.7.3 Additional Commercial Agile Best Practices

were initially developed for small-scale software development projects. However, many

best practices have been added based on lessons learned from large-scale agile software

development projects. The team will benefit from the proven scaling Agile best practices,

described in section 2.2.7.4.2 Scaling Agile Best Practices.

www.manaraa.com

 74

2.2.7.4.1 Challenges of Applying Agile Method to Enterprise

The general Agile methods, described in Section 2.2.7.2 Popular Agile Software

Development Methodologies, are not designed for enterprise organizations which have the

following characteristics [89].

• Large team size

• No daily customer participation

• Distributed development team

• Large scale architecture

• Need of formalized requirement analysis and documented specification

• No Agile culture and physical environment.

2.2.7.4.2 Scaling Agile Best Practices

To assist large enterprise programs in taking advantage of the Agile method, the

following best practices are recommended.

• Team-of-Teams: Leads from each of the Task Orders (TO) to manage dependencies

and coordinate the efforts among the teams (Scrum approach)

• Iteration Zero: Some architecture development up front

• Agile Architecture team: Architecture is a critical part of scaling agile best practices

to meet real world demands. Document a minimalist architecture, develop a

working architecture foundation, define and maintain system qualities and

architectural vision

• Day – Iteration – Cycle – Release – Product: Cycles are collections of several

iterations, and provide an interim management and technical coordination point.

www.manaraa.com

 75

• Program release plan

• Formal product backlog refinement

• Cross-team coordination

• Cross-team integration

• Cross-team testing

• Additional formality and documentation.

2.2.7.5 Government Agile Best Practices

Most of the government applications interact with other programs or lines of business,

and do not easily adapt to change due to its complexity and scale. In fact, the Agile

Manifesto includes some conflicts with the characteristics of government projects.

• The project has to follow predefined processes and use enterprise tools.

• Formal deliverables include documents.

• It is not common to have on-site collaborative customer.

• There is no culture of welcoming requirement changes.

Agile methodologies have limited support for large or distributed team,

subcontracting, and safety-critical, large or complex software. Most of those limitations are

characteristics of government projects.

The following are Agile best practices for government programs.

• Agility within a plan-driven environment using the Agile Program

Assessment Form and the Best Practice Checklist

• Cross-agency / department coordination

• Cross-contractor coordination

www.manaraa.com

 76

• Federal Enterprise Architecture (FEA)

• Integrated development environment for distributed teams

• Agile Program Management Office (PMO)

2.2.7.6 Other Considerations

This section provides the description of other considerations while applying Agile best

practices in a government program.

2.2.7.6.1 Capability Maturity Model Integration

While often thought of as two incompatible models and methodologies for developing

complex software products, benefits can be derived by utilizing both Agile and CMMI best

practices in the same project. Already many government programs can further improve

business performance by exploiting the strengths of each approach.

Agile projects are best typified by adaptive planning. With releases delivered on a

more frequent basis, they return value with each iteration and allow for customer inspection

of the product at regular intervals. The method is software-centric or product-centric with

the focus on development, as opposed to the detailed plan and documentation-centric

approach of CMMI. CMMI focuses on process improvement.

The Software Engineering Institute (SEI) publication, CMMI or Agile: Why Not

Embrace Both! [142], provides a multi-dimensional comparison of the two paradigms.

At the project level, CMMI focuses on process maturity, and Agile methods focus on

‘adaptive’ and ‘lightweight’ method. When implemented together, each provides key

strengths.

www.manaraa.com

 77

2.2.7.6.2 Earned Value Management

Many government programs implement Earned Value Management (EVM) to

measure project progress by combining cost, schedule, and scope measurements. As the

program is defining Agile best practices for the program, the program needs to coordinate

with the EVM process.

2.2.7.6.3 Agile Coach

As a project adapts to Agile software development methods, many organizations have

found it useful to have an Agile coach. This is a person that has extensive Agile project

experience and is an essential mentor of the development and project management team.

The Agile coach is a facilitator that can quickly assess the current status of a project and

report gaps in order to successfully move a project from a traditional methodology to an

Agile state of mind. The Agile coach is also actively involved in keeping up on updates to

best practices and can help a project in organizational and professional development.

2.2.7.6.4 Agile Training

When a government program decides to use the Agile method on any given task order,

the program would ensure the team is adequately trained.

www.manaraa.com

 78

Chapter 3: Research Questions and Method

This section outlines research methods. Section 3.1 presents the research questions.

Section 3.2 describes the action research paradigm and the selected methodology. Section

3.3 presents the research procedures that are used.

Previous action research studies provided guidelines during construction of this

research process, especially one conducted by Ned Kock at a defense contractor in the

United States [143] and another one by him about lessons learned from his doctoral

research [144]. Those research questions have been determined by using observation of

complex social interactions in the software development process [145, 146].

3.1 Research Questions

The following three research questions were addressed.

3.1.1 Research Question 1

 Is it possible to formalize the eclectic approach so that it can be adopted by projects in

the same way the traditional approach has been used?

3.1.2 Research Question 2

 Is ESD well accepted by new practitioners?

3.1.3 Research Question 3

 Does this pentagon represent an acceptable management tool? If not what criteria

would be needed to make it one?

3.2 Research Method: Action Research

Action research produces changes in organization (action), and improves

understanding for researchers and the organization (research) [49]. This dual-goal, cyclic,

responsive, and participative approach allows action and research together while removing

the gap between researcher and practitioners [147].

www.manaraa.com

 79

It was important for this study to have responsiveness [147] for timely balancing

between the plan-driven and agile methodologies. Action Research can be compared with

other major research approaches, as shown in Table 13.

Table 13 Comparison with other major research approaches [144, 148]

Approach Root Key Data Collection
Approaches

Uniqueness

Experimental
research

Scientific
practices of
biologists and
physicians

Numeric data collection with
standardized statistical
analysis procedures

Tests models with
manipulation of variables
over time

Survey
research

Work of
economists and
sociologists

Questionnaires with closed-
ended questions in a
considerable sample
organization

Permits quantitative
evaluation

Case research Business studies Textual data collection with
interviews in a few samples
of organization intensively

Refers to Harvard
Method

Action
research

Studies of social
and work-related
issues

Observation and interviews
in a few sample of
organizations intensively

Provides dual goal of
both improving the
situation and relevant
knowledge. Compared to
Case Research, the action
researcher is directly
involved in change.

Another reason for choosing action research for this study is that the theoretical model

for ESD currently is being developed. Action research is useful for this type of

development [144]. Moreover, Baskerville and Wood-Harper [149] stated that AR is one of

selective approaches currently available for acceptably researching for alternations in

system development methodologies.

For this study, ESD was implemented for selected, real-industry projects in a cyclic

manner. The research design was refined as the researcher and participants learned more.

www.manaraa.com

 80

Each cycle involves data collection, interpretation, and literature review. Learning from

each project was applied to the next project to bring about change.

Action research was selected for previous studies relevant to this proposal for

balancing between theory and practice. For example, success factors were researched by

using AR in large-scale e-gov projects within an organizational, non-laboratory setting

[150]. Other government projects selected action research to improve both the situation and

the theory [143, 151]. Also, action research was selected recently to improve the software

process by utilizing agile methodology [15, 16, 33, 34, 85, 152-157]. New approaches and

models in information systems were introduced, refined, or validated using action research

[15, 158, 159].

3.3 Research Procedures

Action research requires partnerships among the researchers, participants, and

organizations. The researcher negotiated with the client organizations for participating

projects. After a project was selected, it was necessary to educate the participants for action

research and this study. Experience Interview, Program Assessment Form (A.K.A ESD

Pentagon form), Best Practice Checklist, Result Interview, and Observation Notes were

collected with other necessary data.

www.manaraa.com

 81

Figure 29 Susman and Evered’s AR Cycle [160] [149, 161]

This study followed Susman and Evered’s AR Cycle, shown in Figure 29 [160].

Baskerville and Wood-Harper [149, 161] provide a summary of Susman and Evered’s AR

Cycle as shown in Figure 29.

www.manaraa.com

 82

In addition, for quality control purposes, each research cycle was planned, conducted,

and evaluated by utilizing a framework for AR in IS studies proposed by Lau [162].

The client organization was informed that this study is performed under the guidance

of Professor Theresa Jefferson of the Engineering Management and Systems Engineering

Department, School of Engineering and Applied Science, George Washington University.

3.3.1 Selecting Client Organizations and Diagnosing

The first step of this study was to have the decision maker of the client organization

understand that it is mutually beneficial to conduct this study. ESD has been applied and

appreciated in Northrop Grumman Corporation projects [32], and another top 5

government IT contractor in the U.S.

 However, it was open to other projects from other organizations or companies,

depending on negotiation and criteria. Working with more than one organization is

strategically recommended to avoid dependency on a single group, for example to avoid

uncontrolled or unexpected delay due to the participating organization’s various situations

[144].

Three criteria for selecting client organizations and projects are: interest in applying

agility by the government software development project, commitment from the team

members and manager, and approval of the researcher’s planned observation and

interviews about the process and impact. All criteria were requested and evaluated before

the researcher presented the research plan for the project to the decision maker in a client

organization.

www.manaraa.com

 83

Table 14 Target projects

 Project
Name

Application Type Period Resources Status

1 Prior to
this study

Java Web-based
Application

6 months /
2003

9 Dev + 1 Mgr Paper
Published

2 Java/Progress/Orac
le/XML Entreprise
Solution

12 months /
2004

16 Dev + 1 Mgr Completed.

3 Major Release of
Enterprise Solution

12 months /
2006

29 Dev + 3 Tech
Mgr + 1 Mgr

Completed

4 Pilot ColdFusion
Application

12 months
/2008

5 team members Part of this
study

5 Java Web-based
application

Multi years 5 team members

6 Enterprise Portal Multi years 20 Team members
7 Project I Multi agency,

indefinite
delivery/indefinite
quantity (IDIQ)
contract

9 years
/2004 –
2013

200 program
members, 35 sub
projects

8 Project II Enterprise system
integration

5 years
/ 2008 -
2014

20 team members

The number of cycles drives the length of the research timeline and the level of

research efforts. Previous doctoral studies have used between two and four action research

cycles. Teasdale [163] conducted two cycles of action research for his doctoral study on

design and implementation of an enterprise learning system. Kock [144] conducted four

cycles of action research.

3.3.2 Action Planning

The next step is action planning for the ESD target project, which may be based on

research results from a previous project. The following fundamental questions were asked

during this step:

• What outcomes does the client organization wish to achieve?

www.manaraa.com

 84

• What actions does the researcher think will achieve the outcomes?

At this stage, the researcher will collect the participants’ previous work experiences

with SDLC and their expectations from this study. The researcher will provide SDLC and

ESD training sessions to the members of the project and facilitate how to use the ESD

Pentagon Form. To avoid any biases, no SDLC suggestions will be offered.

3.3.3 Action Taking

This step implements ESD for a project. Section 2.2 Eclectic Software Development

describes the current implementation of ESD, noting that it has evolved as this study has

progressed.

The researcher met the client organization to continue facilitating and observing based

on its schedule. The researcher balanced the research pace with the understanding that the

“in the middle of the action” involvement of the researcher may be uncomfortable for some

team members [144].

Action research recommends brief cycles. In fact, this study customized this action

research procedure based on the client project schedule. There were overlaps between

projects because some of projects took longer to be completed than scheduled for various

reasons.

Because the organizational changes, including internal changes and environmental

adaptation, occurred during the study, each cycle of the system development activity

needed to incorporate the continuous changes [164, 165]. Most action research is

participative and interventionist. Instead of just training the participant and watching the

result, the participant had the opportunity to be interactive with the methodology. They

modified it during use for their best result, allowing the chance for our understanding of the

www.manaraa.com

 85

theoretical underpinnings of the methodology to also be adjusted. It provided insight into

how the participant thinks critically. For example, the initial project factors do not include

security, but it was recommended that it be added by the participants during the study.

3.3.4 Evaluating by Collecting Data and Researching

The study collected four main types of data from multiple information sources. :

• interview notes about the participants’ and organization’s experiences and

expectations in the beginning stage (see Appendix A Interview Notes about

the Participants’ and Organization’s Experiences and Expectations)

• ESD Agile Program Assessment Form (also known as the Pentagon Form)

and Best Practice Checklist (see Appendix B Agile Program Assessment

Form and Best Practice Checklist)

• interview notes about participants’ experiences of ESD and the results of the

project (see Appendix C Interview Notes about Participants’ Experiences with

ESD and Results of the Project), and

• researcher’s observation notes (see Appendix D Researcher’s Observation

Note).

Those appendixes were developed utilizing previous studies [166, 167].

Both interviews used semi-structured interviewing, which allows asking more

information to increase researcher’s understanding [166]. Using semi-structured interviews,

the researcher collects data on a set of predefined variables and identifies other undefined

emerging variables.

www.manaraa.com

 86

3.3.5 Specifying Learning (and Refining ESD)

Based on the collected data, the research questions were analyzed. At the end of each

cycle, ESD was refined before being applied to the next project.

3.4 Project Schedule

Figure 30 presents the schedule for this study. The proposal was approved to conduct

action research for 2 projects with two cycles each. The Action Research Project I was

performed in 2009 and the Action Research Project II was performed in 2010. In addition

to the approved study, the researcher conducted 3 pilot projects in 2008. The research

progress and findings have been presented at international conferences.

Action Research Pilot

• Pilot A

• Interview - Initial: 2 (05/2008)

• ESD Form (05/2008, 06/2008)

• Interview – Result (09/2008)

• Researcher Observation Note (09/2008)

• Pilot B

• Interview - Initial: 1 (06/2008)

• ESD Form (06/2008)

• Interview – Result (09/2008)

• Researcher Observation Note (09/2008)

• Pilot C

• ESD Form (08/2008)

• Researcher Observation Note (10/2008)

Action Research
Project I

• Project I ($40M
annual)

• Interview - Initial:
24 (11/08 -
07/2009)

• Cycle 1

• ESD Form: 7
(03/2009)

• Cycle 2

• ESD Form: 2
(08/2009)

• Interview –
Result:2 (09/2009)

• Researcher
Observation Note
(09/2009)

Action Research Project II

• Project II ($5M annual)

• Cycle 1

• Interview - Initial: 10
(12/2009)

• ESD Form: 4 (12/2009)

• Interview – Result (01/2010)

• Researcher Observation Note
(01/2010)

• Cycle 2

• Interview - Initial: 5 (1/2010)

• ESD Form: 4 (1/2009)

• Interview – Result (02/2010)

• Researcher Observation Note
(02/2010)

02/2005 “Eclectic Software Development

Methodology and Successful Software

Development” @IASTED

10/2007 “Agility within the Traditional Plan-

Driven Environment” @Lockheed Martin

MCES

10/2008 “Continuous Integration and Test

Automation” @IASTED

08/2009 “Executive Leadership

Challenges for Agile Adoption” @Agile

2009

10/2008 “Use of a 360-Degree View to

Further Align Technology and Business

Strategy” @NDIA

06/2009 “Agile Handbook”@Lockheed

Martin Program

03/2009 GAgile.com

11/2009 Add Agile to “Lifecycle

Management Process Document” @LM

Program

Figure 30 Proposed schedule

www.manaraa.com

 87

3.5 Project Steps

AR researcher’s interest and action with confounding variables may bias the results

[144]. The Figure 31 Project steps illustrates project steps that the project needs to follow

so that it does not end up biasing the results. This is a protocol to conduct the research and

guidelines of behavior for the project.

The project step explicitly illustrates the entire process using problem solving and

research interest aspects. To maintain credibility, McKay and Marshall [168] suggest to

design the AR study explicitly consisting of two interlinked cycles: a problem solving and

a research interest cycles. This will facilitate the researcher in attaining the dual goals of

AR throughout the research cycle.

In addition, the cycles within cycles utilizes the principle of reflective critique [169],

also called regular critical reflection [49], to correct errors. Figure 31 illustrates the research

process including opportunity for the participants to refine ESD during the Action Taking

phase.

Figure 31 Project steps

www.manaraa.com

 88

3.6 Ethical Considerations

Due to the nature of AR about interacting in a non-laboratory environment, the

researcher had to consider the ethical principles. These are listed by other AR practitioners

[169, 170].

www.manaraa.com

 89

Chapter 4: Analysis and Findings

4.1 Overview

This study consists of 3 pilots and two comprehensive action research projects. The

researcher enhanced and revised the ESD forms based on the responses from contributors

during the first pilot (Pilot A). The researcher launched GAgile.com after the three pilots

(Pilot A, B, and C) to provide commercial level accessibility and credibility and he

introduced the Agile Best Practice Checklist based on the knowledge gained in the action

research.

Two projects (I and II) are end-to-end action research projects, each consisting of two

cycles. After Project I, the knowledge gained in the action research was presented at the

Agile 2009 Conference, Chicago, USA.

This chapter provides the refinement progress of ESD during the study, the number of

study participants, and the study results from project I and II followed by answers to the

research questions.

4.2 Refining ESD

Table 15 depicts milestones for refining ESD during the course of this study. After 3

pilots, the Agile Best Practice Checklist was added and GAgile.com was launched. After

Project I, the experiences were presented at the Agile 2009 conference, and the Agile Best

Practice Checklist was improved based on the feedback. Also, the duration of Action

Taking phase was significantly decreased from four months to one month. The researcher

concludes that the refinement of ESD impacts the acceptance of ESD by new practitioners.

www.manaraa.com

 90

Table 15 Refining ESD

 Experience

Interview

(Appendix A)

ESD Agile

Program

Assessment

Form

(Appendix B)

Agile Best

Practice

Checklist

(Appendix

B)

Result

Interview

(Appendix

C)

Observation

Note

(Appendix

D)

Pilot Study A

2008-05

Version 1 &

Version 2 (Add

‘Neutral’ to the

answers)

Version 1 No checklist

available.

Recognized a

need for Agile

BP Checklist.

Version 1 &

Version 2

(Add

‘Neutral’ to

the answers)

Version 1 &

Version 2

(Removed

fields

regarding

company

information)

Pilot Study B

2008-06

No changes No changes No checklist

available

No changes No changes

Pilot Study C

2008-08

No changes Version 2

(Remove

Comments

section. Add

“Challenge-

Approach-

Action” sections)

No checklist

available

No changes No changes

2009 - 03 Launched GAgile.com

Project I Cycle No changes Version 3

(Update

Version 3 No changes No changes

www.manaraa.com

 91

 Experience

Interview

(Appendix A)

ESD Agile

Program

Assessment

Form

(Appendix B)

Agile Best

Practice

Checklist

(Appendix

B)

Result

Interview

(Appendix

C)

Observation

Note

(Appendix

D)

1

2009-03

instructions and

introduce the

agile BP checklist

v.3)

Project I Cycle

2

2009-08

No changes No changes No changes No changes No changes

2009-08 Presented at the Agile 2009 Conference, Chicago, USA

Project II

Cycle 1

2009-12

No changes Version 4 (Use

the agile BP

checklist v.4.0.

Move leadership

from the first to

last factor to

evaluate. Add

Agile Software

Development

Process. Delete

Result column.

Reformat.)

Version 4

(Reformat,

Add Agile

PMO)

No changes No changes

Project II No changes No changes No changes No changes No changes

www.manaraa.com

 92

 Experience

Interview

(Appendix A)

ESD Agile

Program

Assessment

Form

(Appendix B)

Agile Best

Practice

Checklist

(Appendix

B)

Result

Interview

(Appendix

C)

Observation

Note

(Appendix

D)

Cycle 2

2010-02

4.3 Number of responses

Table 16 provides the number of responses for each research material.

Table 16 Number of responses

 Experience

Interview

ESD Agile Program

Assessment Form (also

known as the Pentagon

Form, Table 11)

Result

Interview

Observation

Note

Pilot Study A 2 Responses 2 Responses

(including Researcher)

1 Response

(Researcher)

1 Response

(Researcher)

Pilot Study B 1 Response 1 Response

(Researcher)

1 Response

(Researcher)

1 Response

(Researcher)

Pilot Study C 0 Response 1 Response

(Researcher)

0 Response 1 Response

(Researcher)

www.manaraa.com

 93

 Experience

Interview

ESD Agile Program

Assessment Form (also

known as the Pentagon

Form, Table 11)

Result

Interview

Observation

Note

Project I Cycle

1 24 Responses

(including

Researcher)

7 Responses

(including Researcher)
2 Responses

1 Response

(Researcher)
Project I Cycle

2

2 Responses

Project II

Cycle 1

9 Responses

4 Responses

(From the Agile PMO

including Researcher)

0 Response 1 Response

(Researcher)

Project II

Cycle 2

0 Responses 7 Responses

8 Response 1 Response

(Researcher)

4.4 Results from Project I

4.4.1 Project I Overview

The participating program is an Indefinite Delivery Indefinite Quantity (IDIQ) contract

for the U.S. Federal Government. The program was awarded on January, 2004 with $700

million ceiling budget for nine years. Their systems engineering services include high-

performance computing, document management, business intelligence, geospatial solutions,

application development, application security, and IT architectural support.

www.manaraa.com

 94

4.4.2 Experience Interview (Project I)

A total of 24 program leaders participated in the research. Figure 32 provides

responses of their experiences and expectations.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Neutral

N/A

No

Yes

Figure 32 Experience Interview Results for Project I

Figure 33 illustrates responses about methodology used for previous projects.

www.manaraa.com

 95

Figure 33 Methodology Used for Previous Projects (Project I)

Figure 34 illustrates responses about methodology used for previous Government

projects.

Figure 34 Methodology Used for Previous Government Projects (Project I)

www.manaraa.com

 96

Figure 35 illustrates responses about methodology planning used for other

Government projects.

Figure 35 Methodology Planning to Use for other Government Projects (Project I)

Figure 36 illustrates responses about methodology planning used to actively advocate

for other projects.

www.manaraa.com

 97

Figure 36 Methodology Planning to Actively Advocate (Project I)

The content analysis is a typically quantitative approach to the study of texts [171-

175]. In addition to the above quantitative analysis, the researcher performed the following

quantitative (summative) and qualitative (thematic) content analysis based on answers from

the semi-structured interview.

• Summative content analysis [171] (Key word counts, Corpus analysis [172]):

Compute frequencies of the occurrences of individual words and

concordances (Table 17)

Table 17 Summative content analysis for initial interview (Project I)

Keywords Frequency ESD Project Factor ESD Project Sub factor

agile 19 N/A

government 18 Project

method 13 Methodologies

development 10 Methodologies

process 10 Processes

project 10 Project

methodology 9 Methodologies

www.manaraa.com

 98

customer 8 People

think 7 N/A

changes 6 Project

reservation 6 N/A

software 6 Tools

believe 5 N/A

team 5 People

apply 4 Process Model

aspect 4 N/A

documented 4 Methodologies All

experience 4 People Skill Set

requirements 4 Methodologies Requirement

agencies 3 People Structure

contractor 3 People Structure

design 3 Methodologies Analysis and Design

early 3 Process Model

following 3 N/A

implementation 3 Process Execution

involved 3 People Acceptance

major 3 Project Scope

people 3 People All

plan 3 Process Model

result 3 Project

schedule 3 Project Schedule

success 3 N/A

type 3 N/A N/A

• Thematic content analysis [172]– Directed approach analysis[171]: Capture

dominant themes in a text using categories (coding schema) based on project

factors of the Agile program assessment form.

www.manaraa.com

 99

Figure 37 Thematic content analysis for initial interview (Project I)

4.4.3 ESD Agile Assessment and Agile BP Checklist (Project I)

The program selected Agile best practices to balance between Agile and traditional

methodologies. Agile Program Assessment Form (version 3.0) and Best Practice Checklist

were used to support the selection. These two assets have been utilized to review multiple

best practices based on various factors.

www.manaraa.com

 100

Figure 38 Agile Best Practices Checklist (Project I)

Figure 39 provides the rating by the assessment, and Figure 40, Figure 41, and Figure

42 provide summative analysis result of the assessment.

www.manaraa.com

 101

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Structure

Skill Set

Training

Acceptance

Requirement

Analysis and Design

Development

Test

Tool

Framework

Architecture

Technology

Model

Execution

Assess

Improvement

Visionary

Technical

Functional

Managerial

Agile Program Assessment Form - Rate (Project I)

Average

Figure 39 Agile program assessment form – rate (Project I)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

Structure

Skill Set

Training

Acceptance

Requirement

Analysis and Design

Development

Test

Tool

Framework

Architecture

Technology

Model

Execution

Assess

Improvement

Visionary

Technical

Functional

Managerial

Summative content analysis

Agile Program Assessment Form - Challenges / Comments (Project I)

Average

Figure 40 Summative content analysis: Agile program assessment form -

challenges/comments (Project I)

www.manaraa.com

 102

0.0

2.0

4.0

6.0
8.0

10.0
12.0

14.0

16.0
18.0

20.0

Structure

Skill Set

Training

Acceptance

Requirement

Analysis and Design

Development

Test

Tool

Framework

Architecture

Technology

Model

Execution

Assess

Improvement

Visionary

Technical

Functional

Managerial

Summative content analysis

Agile Program Assessment Form - Approach (Project I)

Average

Figure 41 Summative content analysis: Agile program assessment form – Approach

(Project I)

142%

104%

203%

156%

95%

70%

144%

71%

110%

33%

76%
68% 66%

38% 38% 38%

148%

197%

134%

68%

0%

50%

100%

150%

200%

250%

Summative content analysis (Project I)

Agile Program Assessment Form - Overall

Figure 42 Summative content analysis: Agile program assessment form – Overall (Project I)

www.manaraa.com

 103

4.4.4 Result Interview (Project I)

Two key individuals, who participated in the project, were interviewed.

ESD has been implemented to promote efficient responsiveness to changes (a

limitation of the plan-driven method and a benefit of the agile method) and predictability (a

benefit of the plan-driven method) for the government project (a limitation of agile). As

Figure 43 indicates, they responded that the team partially or fully achieves these goals

using ESD.

Figure 43 ESD Results (Project I)

As Figure 44 and Figure 45 indicate, both respondents said that they will use ESD

again and will actively advocate for ESD in the future.

www.manaraa.com

 104

Figure 44 Will you use ESD again? (Project I)

Figure 45 Will you actively advocate for ESD in the future? (Project I)

4.4.5 Observer’s Note

Based on ESD, this program developed the Agile Software Development Handbook to

provide information about the Agile Software Development Best Practices selected by the

www.manaraa.com

 105

program. The handbook describes how the program development teams can leverage the

selected Agile Software Development Best Practices. This handbook also introduces the

development team to the Agile Best Practices and tailoring process and how it can be used

effectively with the program System Development Life Cycle (SDLC).

Some key activities are presented below.

• December, 2008: Presented ESD to CTO, Chief Software Engineer, and Tech

Leads

• January, 2009: Developed Agile Handbook

• February, 2009: A Federal customer requested an Agile Process document.

• March, 2009: Presented ESD to Program Director, Deputy Program Director,

and Portfolio Managers.

• May 2009: Conducted Agile Lunchtime Learning Session

• September, 2009: Developed Software Development Lifecycle Process

Document including Agile as one of approved SDLC methodologies.

4.3.5 Research Challenges

The researcher faced the following challenges:

• Large number of stakeholders: In initiating agile adoption for the program, it

took time to build a program-level partnership with many stakeholders.

• Existing process documents: The traditional program management office

mandated the development of a formal process document for Agile, which

would result in updating over 200 existing organizational process documents.

While necessary, it delayed the adoption process, causing the team to lose

momentum.

www.manaraa.com

 106

• Priority: The agile implementation was dependent upon program priorities,

especially short term urgent issues.

• Leadership style: The agile implementation was impacted by the leadership

styles of senior program leaders.

• Agile champion: The program agile champion did not have enough

knowledge and experience with Agile.

• Budget: Program level implementation required an investment in training

which was not budgeted.

4.5 Results from Project II

4.5.1 Project II Overview

This program, $5M for FY 2010, is an integration of four primary U.S. Environmental

Protection Agency Superfund data collection, reporting and tracking systems. It will serve

as the single official source of primary site activity data, records, and support

documentation.

4.5.2 Experience Interview (Project II)

A total of 10 agile team members participated in the research. Figure 46 provides

responses of their experiences and expectations.

www.manaraa.com

 107

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Neutral

N/A

No

Yes

Figure 46 Experience Interview Results for Project II

Figure 47 illustrates responses about methodology used for previous projects.

Figure 47 Methodology Used for Previous Projects (Project II)

www.manaraa.com

 108

Figure 48 illustrates responses about methodology used for previous Government

projects.

Figure 48 Methodology Used for Previous Government Projects (Project II)

Figure 49 illustrates responses about methodology planning to use for other

Government projects.

www.manaraa.com

 109

Figure 49 Methodology Planning to Use for other Government Projects (Project II)

Figure 50 illustrates responses about methodology planning to actively advocate for

other projects.

Figure 50 Methodology Planning to Actively Advocate (Project II)

www.manaraa.com

 110

As in Project I, a content analysis was conducted for Project II. Results are presented

in Table 18 Summative content analysis for initial interview (Project II) and Figure 51

Thematic content analysis for initial interview (Project II).

Table 18 Summative content analysis for initial interview (Project II)

Keywords Frequency ESD Project Factor ESD Project Sub factor

agile 7 N/A

method /

methodology 6 Methodologies

code / coding 3 Tools

development /

developing 3 Methodologies

difficult 3 People Acceptance

government 3 Project

apply 2 Process Model

client 2 People

customer 2 People

docs /

documenting 2 Methodologies

prototype /

prototyping 2 Methodologies

reliance 2 Tools

ability 1 People Skill Set

adopt 1 People Acceptance

artifacts 1 Process

assumptions 1 People

automatable 1 Process

beginning 1 Process

changing 1 Project

cmmi 1 Process

commercial 1 N/A

commitments 1 People Acceptance

contracts 1 Project

cycles 1 Process

db 1 Tools

demo 1 Methodologies

design 1 Methodologies

developers 1 People

directive 1 Leadership

www.manaraa.com

 111

enhance 1 Process Improvement

experience 1 People Skill Set

feedback 1 Process Improvement

flexibility 1 Methodologies

involved 1 People

loe 1 Leadership Managerial

meeting 1 People Structure

model 1 Process Model

overhead 1 People Structure

process 1 Process

produces 1 Methodologies

progress 1 Leadership Managerial

qualify 1 Process

requirement 1 Methodologies Requirement

responsive 1 People

scheduling 1 Leadership Managerial

small 1 Project

sponsor 1 People

stakeholders 1 People

suitable 1 Process Model

suite 1 Process Acceptance

tailored 1 Process Model

team 1 People

tests 1 Methodologies Test

timely 1 Process Execution

tracking 1 Leadership Managerial

unit 1 Methodologies Test

waterfall 1 Methodologies

www.manaraa.com

 112

Figure 51 Thematic content analysis for initial interview (Project II)

4.5.3 ESD Agile Assessment Form and BP Checklist

The leadership team had a kick-off meeting to review and select an Agile process that

balanced between the plan-driven and Agile methodologies. The Agile Program

Assessment Form (version 4.0) and Best Practice Checklist were used to support the

selection. Figure 52 is an artifact from the kick-off meeting; Figure 53 is the agile process

overview, prepared as part of the Agile Procedure Document approved by the Organization

www.manaraa.com

 113

Process Group; and Figure 54 is the initial version of the Agile Technical Framework based

on the kick-off meeting.

Figure 52 Agile Best Practices Checklist (Project II)

Figure 53 Agile Process based on Agile Best Practices Checklist Review (Project II)

www.manaraa.com

 114

Figure 54 Agile Technical Framework based on Agile Best Practices Checklist Review

(Project II)

Figure 55 provides the rating by the assessment, and Figure 56, Figure 57, and Figure

58 provide summative analysis of the assessment.

www.manaraa.com

 115

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Structure

Skill Set

Training

Acceptance

Requirement

Analysis and Design

Development

Test

Tool

Framework

Architecture

Technology

Model

Execution

Assess

Improvement

Visionary

Technical

Functional

Managerial

Agile Program Assessment Form - Rate (Project II)

Average

Figure 55 Agile program assessment form – rate (Project II)

Figure 56 Summative content analysis: Agile program assessment form -

challenges/comments (Project II)

www.manaraa.com

 116

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0
Structure

Skill Set

Training

Acceptance

Requirement

Analysis and Design

Development

Test

Tool

Framework

Architecture

Technology

Model

Execution

Assess

Improvement

Visionary

Technical

Functional

Managerial

Summative content analysis

Agile Program Assessment Form - Approach (Project II)

Average

Figure 57 Summative content analysis: Agile program assessment form – Approach

(Project II)

99%

123%

77%

156%

135%

211%

115%

129%

67% 68%

39%
47%

87%

56%

33%

46%

179%

107%

87%

139%

0%

50%

100%

150%

200%

250%

Summative content analysis (Project II)

Agile Program Assessment Form - Overall

Figure 58 Summative content analysis: Agile program assessment form – Overall (Project

II)

www.manaraa.com

 117

4.5.4 Result Interview

Eight key individuals, who participated in the project, were interviewed.

ESD has been implemented to promote efficient responsiveness to changes (a

limitation of the plan-driven method and a benefit of the agile method) and predictability (a

benefit of the plan-driven method) for the government project (a limitation of agile). As

Figure 59 indicates, they responded that the team partially achieved these goals using ESD.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6

Responsiveness to

Changes

Predictability

Figure 59 ESD Results (Project II)

As Figure 60 and Figure 61 indicate, 5 respondents said that they will use ESD again

while 3 were neutral to using it again. With regard to actively advocating for ESD use in

the future, 3 respondents said they would actively advocate for ESD usage while 5

respondents were neutral.

www.manaraa.com

 118

0

1

2

3

4

5

6

Yes No Neutral

Will you use ESD again?

Will you use ESD again?

Figure 60 Will you use ESD again? (Project II)

Figure 61 Will you actively advocate for ESD in the future? (Project II)

4.5.5 Observer’s Note

Based on ESD, this development team adopted and implemented the Agile Software

Development.

www.manaraa.com

 119

Some key activities are presented below.

• December 14, 2009: Formed the Agile PMO and completed the Agile BP

Checklist

• December 15, 2009: Drafted the Agile Process Document

• December 18, 2009: Performed proof of concept for a Continuous Integration

tool

• December 23, 2009: Conducted an Agile Software Development Process

Training to 10 cross-functional team members

• January 5, 2010: Held the first sprint meeting, Sprint 0 Planning meeting

• January 6, 2010: Held the first Daily Sprint Meeting (DSM)

• January 19, 2010: Sprint 0 Demo and Sprint 1 Planning meeting

• January 20, 2010: Presented Agile Sprint 0 briefing to the customer

committee

• February 1, 2010: Sprint 1 Demo

• February 2, 2010: Sprint 2 Planning meeting

4.3.5 Research Challenges

The researcher faced the following challenges:

• Transition from a functional-based team to a feature-based team: The team

structure was functional-based. Several mentoring and training session were

conducted by the researcher.

• Lack of leadership: The technical lead had no experience using Agile on a

large application development project. Additional technology leadership was

added after two sprints.

www.manaraa.com

 120

• Misunderstanding of Agile: Some team members believed that Agile was

about just cutting corners.

• Transition from multiple assignments to a dedicated team: During the

transition, the team members were not dedicated to this development task.

The researcher recommended a team-wide restructuring, with one group

dedicated to the Agile project and another group dedicated to a non-Agile

project.

• Understanding of team’s capacity: The team kept requesting additional

resources because they felt they were behind schedule due to a lack of

personnel resources. However, due to the multi assignments, the team was

unable to track planned versus actual hours per assignment or task. This

resulted in the team questioning its true size and capabilities.

4.6 Testing of Research Questions

4.6.1 Research Question 1

 Table 19 provides the research results of Research Question 1, ‘Is it possible to

formalize the eclectic approach so that it can be adopted by projects in the same way

traditional approach has been used?’

Table 19 Testing of Research Question 1

Research Projects Testing of Research Questions

Project I Cycle 1 YES

A program level Agile handbook was developed based on ESD.

Project I Cycle 2 Yes

www.manaraa.com

 121

Research Projects Testing of Research Questions

A program level SDLC Process document including Agile was

developed based on ESD.

Knowledge gained from Project I was presented at Agile 2009

Conference as a solution to executive leadership challenges. A corporate

vice present (VP) from $31 billion Fortune 100 company sent an email

to the researcher that ‘Yours was the best presentation I attended.

Would you be able to provide feedback on our AGILITY pitch to our C

level, particularly our CIO?’ Comments based on ESD and materials of

ESD were provided.

Presented as part of a corporate wide Software Learning Series.

Project II Cycle 1 YES

Agile process document was developed based on ESD.

Agile technical framework based on ESD was selected.

Project II Cycle 2 YES

Agile PMO was formed.

Lifecycle Selection Document was updated to include Agile based on

ESD.

Agile Process Document was developed based on ESD.

The team conducted Agile Software Development Process Training

based on ESD.

Planning meeting, daily scrum meetings, internal demo, and customer

www.manaraa.com

 122

Research Projects Testing of Research Questions

demo were scheduled and performed.

The program director reviewed the accomplishments from Sprint 0; she

was pleased and approved continuing Agile based on ESD.

4.6.2 Research Question 2

Table 20 provides the research results of the Research Question 2, ‘Is ESD well

accepted by new practitioners?’

Table 20 Testing of Research Questions 2

Research Projects Testing of Research Questions

Project I Based on the interview with 24 participants as illustrated in Figure 62, 18

of them (75% compared to 55% average from other methods) used

ESD-like method (applying process fragments from various methods

into one project), 17 of them (71% comparing to 46% average from

other methods) used ESD-like method n government, 16 of them (66%

compared to 37% average from other methods) will use ESD-like

method for other government projects, and 15 of them (63% compared

to 34% average from other methods) will actively advocate for ESD-like

method n the future.

After performing ESD, 2 of the key stakeholders responded they (100%

compared to 37% average from other methods) will use ESD for other

government projects, and all of them (100% compared to 34% average

from other methods) will actively advocate for ESD use in the future.

Project II Based on the interview with 9 participants as illustrated in Figure 64, 1

www.manaraa.com

 123

Research Projects Testing of Research Questions

of them (11% compared to 39% average from other methods) used

ESD-like method (applying process fragments from various methods

into one project), 1 of them (11% compared to 33% average from other

methods) used ESD-like method in government, none of them (0%

compared to 20% average from other methods) will use ESD-like

method for other government projects, and none of them (0%

compared to 13% average from other methods) will actively advocate

for ESD-like method in the future.

After performing ESD, 8 of key team members responded that 5 of

them (63% compared to 20% average from other methods) will use

ESD for other government projects, and 3 of them (38% compared to

13% average from other methods) will actively advocate for ESD in the

future.

Figure 62 Experiences of ESD-like (Project I)

www.manaraa.com

 124

Figure 63 Experiences of ESD (Project I)

Figure 64 Experiences of ESD-like (Project II)

www.manaraa.com

 125

Figure 65 Experiences of ESD (Project II)

4.6.3 Research Question 3

Table 21 provides research results for Research Question 3, ‘Does this pentagon

represent an acceptable management tool? If not, what criteria would be needed to make it

one?’

Table 21 Testing of Research Question 3

Research Projects Testing of Research Questions

Pilots The ESD Agile Program Assessment Form (also known as ESD

pentagon) was changed based on the three pilot studies. The five

assessment factors were not changed, but a comprehensive, practical,

easy to use Agile Best Practice Checklist was added.

It became a more useful management tool.

www.manaraa.com

 126

Research Projects Testing of Research Questions

Project I Cycle 1 One reviewer says that his organization has not implemented any agility,

and the rating is 0 for all five factors. The ESD Assessment Form itself

may not be the main management tool. Therefore, the BP Checklist and

Assessment Form are used together as a single management tool.

Project I Cycle 2 Updated based on the comments.

Rearranged the evaluation factor.

Enhanced the Assessment Form and BP Checklist to provide a

commercial look and feel.

Project II Cycle 1 Version 4 was developed to provide a well-accepted format.

Project II Cycle 2 Version 4 was used continuously. Very well accepted.

Overall Agile Best Practice Checklist was added.

Usability and format was enhanced.

Project factor (Scope, Schedule, Budget, Quality, and Response to

Changes) was added.

www.manaraa.com

 127

Chapter 5: Conclusions and Recommendations

5.1 Conclusions

The private sector has widely utilized Agile Methodology for a number of years, and

the government sector has started adopting this adaptive method. Compare to process-

oriented and predictive traditional plan-driven methodology, agile methodology is

described as people-oriented and adaptive. This study provided many references of

limitations of authentic agile methods applied to government software development. The

government sector manages software development projects differently from the private

sector and faces unique challenges. Change is often not embraced, especially when each

module or task is delivered from different contractors. The government usually requires a

well-defined, planned, controlled, auditable, and tested project.

The ESD approach provides strategic and tactical best practices for government

programs including data collection tools and analytical processes to balance between

traditional environment and Agile methodologies. The theory behind ESD is the selective

use of the right tools, methodologies, processes, and human resources by project leadership

at the right time in the software development lifecycle, within the confines and structures

already defined for large-scale and contract-based government projects. ESD was initially

developed in 2004 by a software development team at Northrop Grumman Mission

Systems for U.S. Department of Defense projects. It is not a proprietary methodology. As a

pragmatic rather than a dogmatic framework, it has been applied to additional projects with

continuous refinement.

Software development engineers and managers often select and use different portions

of existing methodologies. Other peer-reviewed eclectic approaches, such as Situational

www.manaraa.com

 128

Method Engineering (SME), Living Software Development Process, and Other Agile-

influenced Hybrid Approaches, share the philosophy and vision of ESD but present

different implementation approaches. This study provides an action research-based

framework to refine and validate other eclectic methodologies.

While this eclectic approach has been accepted by some government software

development projects, the government sector demands the formal validation of this eclectic

approach. To contribute to the software engineering industry and academic community

with respect to meeting user needs, this study used action research to apply ESD practices

to real government projects in a cyclic manner. In addition to the validating and refining

ESD, this study answered three research questions about formalization, acceptance, and

effectiveness of the ESD.

As this research needed a cyclic, responsive, and participative research approach,

action research was utilized for actions to invoke change and research to increase the

understanding. It combined theory and practice. This study was developed and conducted

based on Susman and Wood-Harper’s Action Research Cycle, and guidelines of previous

action researches in software engineering, especially one by Ned Kock and lessons learned

from his doctoral research, and Information System Action Research Framework by Lau.

This study will contribute to future researches about a structured formal validation of new

methodologies in the software engineering field.

This study consists of 3 pilots and two comprehensive action research projects. The

researcher launched GAgile.com after the three pilots (Pilot A, B, and C) to provide

commercial level accessibility and credibility. Project I and Project II are software

engineering projects for the U.S. Federal Government. Project I is a $700 million nine-year

www.manaraa.com

 129

contract, and Project II had a $5 million budget for FY 2010. Following the conclusion of

Project I, the knowledge gained in the action research was presented at the Agile 2009

Conference in Chicago, Illinois, USA. It was very well accepted by other large

organizations including financial institutions.

Semi-Structured Experience Interview, Program Assessment Form, Best Practice

Checklist, Result Interview, and Observation Notes were collected along with other

necessary data. In addition to the above quantitative analysis, the researcher performed the

quantitative (Summative content analysis) and qualitative (Thematic content analysis and

Directed approach analysis) content analysis based on answers from the semi-structured

interview. As part of the Project II, the researcher developed an Agile Process document

and an Agile Technical Framework for the client organization.

Even though this study had an agreement from the executive leadership of the client

organization, it took more than 3 years to complete the study including the planning stage.

When an action research study requires not only large number of participants but also large

size projects, it requires persistent and long term commitment from the researcher. Also,

conducting pilots were essential to understanding the client organization and

communicating the process to the participant.

The following section 5.2 summarizes answers for the research questions.

5.2 Synthesis of Research Questions

Research Question 1, which was answered as yes, states that “Is it possible to

formalize the eclectic approach so that it can be adopted by projects in the same way the

traditional approach has been used?” Utilizing ESD formally, two large programs,

including a $700M government program which was operated by a $42B revenue company,

www.manaraa.com

 130

have introduced and executed the agile method to the plan-driven formal organization. The

ESD execution process was tested using three pilot programs and the two programs with

two cycles each have validated that the formalized ESD can be adopted by projects in the

same way traditional approaches have been used. For example, an agile handbook, a

Software Development Life Cycle Model selection procedure document, and an agile

process document were developed based on the ESD. Also, artifacts and templates

including an experience survey, an agile best practices checklist, a project assessment form,

a result survey, and an observation note have been adopted by the practitioners. The ESD

was peer reviewed and presented at two international conferences, as well as cross-program

level and corporate level webinars.

Research Question 2, which was answered as 70% positive, states that “Is ESD well

accepted by new practitioners?” Approximately 35 % of the participant group responded

that they will use or advocate for a software development methodology in average. Before

the study, around 63% of the participant group responded that they will use or advocate for

ESD-like (applying process fragments from various methods into one project) software

development methodology After the study, 100% of the participant group responded that

they will use or advocate for ESD software development methodology This group of

participants in general has a neutral opinion of any software development methodologies,

and a positive opinion of ESD-like software development methodologies. Following the

study, this group of participants reported a more positive opinion of ESD. This study

verified that ESD is well accepted by new practitioners.

From Project II, around 15 % of the participant group responded that they will, on

average, use or advocate for a software development methodology. Prior to the study, none

www.manaraa.com

 131

of the participant group responded that they will use or advocate for ESD-like like

(applying process fragments from various methods into one project) software development

methodology After the study, 50% of the participant group responded that they will use or

advocate for ESD software development methodology This group of participant in general

has a negative opinion of software development methodology, and a very skeptical opinion

of ESD-like software development methodology. Following this study, this group of

participants reported a positive opinion of ESD. This study verified that ESD is well

accepted by new practitioners.

However, the value of this quantitative analysis with Research Question 2 is very

limited, and it can be used as only reference data. After the study, the research concluded

that qualitative analysis with Research Question 1 and 3 provide more values to the

software engineering field than what the quantitative analysis with Research Question 2

does.

Research Question 3 states that “Does this pentagon represent an acceptable

management tool? If not, what criteria would be needed to make it one?" Based on the

summative and thematic content analysis of semi-structured interview results, in addition to

traditional quantitative analysis, this question was answered as YES. As a result a new

assessment factor with four sub factors was added to increase the quality of the

management tool. Also, utilizing Evaluating and Specifying Learning phases of action

research, the research organization and ESD community has experienced a significant

responsiveness and improvement in ESD and its tools.

www.manaraa.com

 132

5.3 GAgile Objective

Although the practitioner approved of the concept and content of ESD, it was clear

from the result of the pilot study that the presentation format was important. The early

developed methods including the Waterfall and spiral models are simple conceptually and

are maintained by the academic community. However, recently developed methods

including, RUP, XP, and Scrum benefit from being a more commercialized product,

providing a reference model, training, certification, tools, a community, and conferences.

ESD has been launched and renamed to GAgile to better serve for this practitioner.

Findings from this action research study provide not only a formalized empirical study

of applying ESD to the real programs but also a practical and commercial-like process,

templates, and structure.

5.4 Recommendation for Future Work

This action research has validated the formalized approach of ESD for real programs.

Using this time-consuming action research method, this study has not only formalized the

ESD method but also enhanced the concept, content, process, and templates. Using the

ESD method, a plan-driven $700M program and another program in a $42B company

adopted the Agile method. As a result, the GAgile product was launched. Based on this

AR study, survey research and case research associated with training has to be planned to

collect more empirical data from a large number of actual implantations of ESD, now

GAgile.

A tool can be developed to generate a proposed process based on the experience

interview, an agile best practice checklist, an assessment form, a result interview, and an

observation note. It serves as a plug-in to the portfolio and project management tool, or the

www.manaraa.com

 133

agile lifecycle management tool. Such a tool can be used by the real program as action

research.

www.manaraa.com

 134

 References

1. Salamango, M. and J. Cunningham. Leading the Agile Way: Duty. Honor. Delivery. in Agile
2006. 2006. Minneapolis, MN.

2. Babuscio, J. How the FBI learned to catch bad guys one iteration at a time. in Agile 2009. 2009.
Chicago, USA.

3. Morgan, D. Covert Agile: Development at the Speed of…Government? in Agile 2009. 2009.
Chicago, USA.

4. McMahon, P.E., Lessons learned using agile methods on large defense contracts. CROSSTALK,
The Journal of Defense Software Engineering, 2006. 19(5): p. 25-30.

5. Sime, A. How to sell a traditional client on an agile project plan. in Agile 2009. 2009. Chicago,
USA.

6. Lee, M.-G. Executive Leadership Challenges for Agile Adoption. in Agile 2009. 2009. Chicago,
USA.

7. Eckstein, J., Agility: coming of age, in Invited Talks in 6th International Conference, XP 2005.
2005, Springer-Verlag GmbH: Sheffield, UK.

8. Scott, J., R. Johnson, and M. McCullough. Executing Agile in a Structured Organization:
Government. in Agile 2008. 2008. Toronto, ON.

9. Cuellar, R. and J. York. Succeeding with Agile in the US. Federal Government Arena. in Agile
2007. 2007. Washington D.C.

10. Franklin, T. Adventures in Agile Contracting: Evolving from Time and Materials to Fixed Price,
Fixed Scope, Fixed Schedule Contracts. in Agile 2008. 2008. Toronto, ON.

11. Wankerl, J. and B. Raines. Making an Enterprise Agile Transition Happen in the Face of
Federal Bureaucracy. in Agile 2009. 2009. Chicago, USA.

12. Koehnemann, H. Experiences Applying Agile Practices to Large Systems. in Agile 2009. 2009.
Chicago, USA.

13. Gnatz, M., et al., The living software development process. Software Quality Professional,
2003. 5(3): p. 1-22.

14. Henderson-Sellers, B., Method engineering for OO systems development. Communications of
the ACM, 2003. 46(10): p. 73-78.

15. Henderson-Sellers, B. and M.K. Serour, Creating a dual-agility method: The value of method
engineering. Journal of Database Management, 2005. 16(4): p. 1-23.

16. Keenan, F. Agile process tailoring and problem analysis (APTLY). in 26th international
conference on software engineering, 2004. 2004: IEEE.

17. Lindvall, M., et al., Agile software development in large organizations. IEEE Computer, 2004.
December 2004: p. 26-34.

18. Lycett, M., et al., Migrating agile methods to standardized development practice. IEEE
Computer, 2003. June 2003: p. 79-85.

19. Ralyté, J. and C. Rolland. An assembly process model for method engineering. in 13th
international conference on advanced information systems engineering, CAISE01. 2001.
Switzerland: Springer-Verlag.

20. Executive Office of the President of the United States, Analytical perspectives, Budget of the
United States Government, Fiscal Year 2006. 2005, U.S. Government Printing Office. p.
173-179.

21. Office of E-Government & Information Technology, Updated Federal IT Spending for
Budget Year 2010. 2010.

22. Chabrow, E., State of the union, in InformationWeek. 2005. p. 40 - 47.

www.manaraa.com

 135

23. Mosquera, M., Health IT contract failure part of VA mismanagement pattern, inspector says, in
Government Health IT. 2009.

24. Hedgpeth, D., Census Back to Pen and Paper, in Washington Post. 2008.
25. Arnott, S., Government IT problems since 1997: How the overspend adds up to £1.5bn, in

Computing. 2003.
26. Young, T., NHS given six months to get IT right, in Computing. 2009.
27. BBC News, IT failure 'causes £130m arrears', in BBC News. 2008.
28. The Australian Today, Myki delayed in $216m hit, in The Australian Today. 2008.
29. The Japan Times, Special panel to investigate pension fiasco, in The Japan Times. 2007.
30. Pearce, S., Government IT Projects, POST Report 200. 2003, Parliamentary Office of

Science and Technology, The United Kingdom Parliament.
31. Boehm, B. and R. Turner, Balancing agility and discipline: a guide for the perplexed. 2003:

Addison Wesley.
32. Lee, M.-G., P. Yu, and T. Jefferson, Eclectic software process methodology and successful software

development, in Software Engineering 2005. 2005, International association of science and
technology for development (IASTED): Innsbruck, Austria.

33. Oliveira Basto da Silva, J.G.A. and P. Rupino da Cunha. Reconciling the Irreconcilable? A
Software Development Approach that Combines Agile with Formal. in The 39th Annual Hawaii
International Conference on System Sciences. 2006.

34. Cohen, S.J. and W.H. Money. Bridge Methods: Complementary Steps Integrating Agile
Development Tools & Methods with Formal Process Methodologies. in the 41st Hawaii
International Conference on System Sciences - 2008. 2008. Waikoloa, Big Island, Hawaii.

35. Alleman, G.B., M. Henderson, and R. Seggelke. Making agile development work in a
government contracting environment: measuring velocity with earned value. in Agile Development
Conference, 2003. ADC 2003. 2003: IEEE.

36. Upender, B. Staying agile in government software projects. in Agile 2005. 2005. Denver,
Colorado.

37. Willison, J.S., Agile software development for an agile force. CROSSTALK, The Journal of
Defense Software Engineering, 2004. 17(4): p. 16-19.

38. Nerur, S., R. Mahapatra, and G. Mangalaraj, Challenges of migrating to agile methodologies.
Communications of the ACM, 2005. 48(5): p. 73-78.

39. Davis, A.M., E.H. Bersoff, and E.R. Comer, A strategy for comparing alternative software
development life cycle models. IEEE Transactions on Software Engineering, 1988. 14(10): p.
1453-1461.

40. Sorensen, R., A comparison of software development methodologies. CROSSTALK, The Journal
of Defense Software Engineering, 1995. 8(1).

41. Verner, J.M. and N. Cerpa. The effect of department size on developer attitudes to prototyping. in
International conference of software engineering. 1997: ACM.

42. Bren, S., et al. Information management and federal government agencies: case studies. in IEEE
International Professional Communication Conference, 2001. IPCC 2001. 2001. Sante Fe, NM,
USA.

43. Ferguson, J.R. and M.E. DeRiso, Software acquisition: a comparison of DoD and commercial
practices, in Special Report CMU/SEI-94-SR-9. 1994, Software Engineering Institute:
Pittsburgh, PA.

44. OECD, The hidden threat to e-government: Avoiding large government IT failures. 2001, OECD
Public Management Policy Brief.

www.manaraa.com

 136

45. Computing Services and Software Association, Getting IT right for government: A review of
public sector IT projects. 2000, Computing Services and Software Association.

46. Fletcher, P.D., FirstGov: The portal to the U.S. federal government, in New Models of
Collaboration. A Guide for Managers. 2003, Center for Technology in Government,
University of Albany, SUNY: Albany, NY.

47. Sall, K. How the US Federal Government is using XML. in XML Conference & Exposition
2003. 2003. Philadelphia, PA.

48. Clark, E.K.B., et al., Mission-critical and mission-support software: A preliminary maintenance
characterization. CROSSTALK, The Journal of Defense Software Engineering, 1999.
12(6): p. 17 - 22.

49. Dick, B., Action research: action and research. Available at
http://www.scu.edu.au/schools/gcm/ar/arp/aandr.html. 2002.

50. Fowler, M., The new methodology. 2003.
51. Cockburn, A., Selecting a project's methodology. IEEE Software, 2000. July/August 2000:

p. 64 - 71.
52. http://www.agilemanifesto.org/. 2001.
53. Highsmith, J. Agile Project Management—Innovation in Action. in Agile 2009. 2009.

Chicago, USA.
54. Royce, W.W. Managing the development of large software system. in IEEE WESCON. 1970.
55. Vliet, H.V., Software engineering: principles and practice. 2000, Chichester, England: John

Wiley.
56. Pressman, R.S., Software engineering: a practitioner's approach. 2001, Boston, MA: McGraw-

Hill.
57. Cantor, M., Software leadership, a guide to successful software development. 2002, Boston, MA:

Addison-Wesley.
58. Schrage, M., Never go to a client meeting without a prototype. IEEE Software, 2004. 21(2): p.

42 - 45.
59. Martin, J., Rapid application development. 1991, New York: Macmillan.
60. Bayer, S. and J. Highsmith, RADical software development. American Programmer, 1994.

7: p. 35-42.
61. Berger, H. and P. Beynon-Davies. Issues impacting on the project management of a RAD

development approach of a large, complex government IT project. in 8th pacific Asia conference on
information systems. 2004. Shanghai, China.

62. Boehm, B.W., A spiral model of software development and enhancement. IEEE Computer,
1988. 21(5): p. 61-72.

63. Cronin, D., Early and often: How to avoid the design revision death spiral. Gain: Journal of
Business and Design, 2006(March 2, 2006): p. 2 - 13.

64. Boehm, B.W., et al., Using the winwin spiral model: a case study. IEEE Computer, 1998.
31(7): p. 33-44.

65. Boehm, B.W. and R. Ross, Theory-W software project management: principles and examples.
IEEE Transactions on Software Engineering, 1989. 15(7): p. 902-916.

66. Kruchten, P., The rational unified process, an introduction. 1998, Reading, MA: Addison-
Wesley.

67. Williams, L. and A. Cockburn, Agile software development: it's about feedback and change.
IEEE Computer, 2003: p. 39-43.

68. http://www.agilemanifesto.org/principles.html. 2001.
69. The C3 Team, Chrysler goes to "Extremes", in Distributed Computing. 1998. p. 24-28.

www.manaraa.com

 137

70. Beck, K., Embracing change with extreme programming. IEEE Computer, 1999. 32(10): p.
70-77.

71. Jeffries, R., What is extreme programming?
http://www.xprogramming.com/xpmag/whatisxp.htm. 2001.

72. Auer, K. and R. Miller, Extreme programming applied: playing to win. 2002, Boston [Mass.];
London: Addison-Wesley.

73. Cockburn, A., Learning from agile software development - part two. CROSSTALK, The
Journal of Defense Software Engineering, 2002b. 15(11).

74. Highsmith, J., Agile software development ecosystems. 2002, Boston: Addison-Wesley.
75. Highsmith, J., Messy, exciting, and anxiety-ridden: adaptive software development. American

Programmer, 1997. X(1).
76. Rising, L. and N.S. Janoff, The Scrum software development process for small teams. IEEE

Software, 2000. 17(4): p. 26 - 32.
77. ControlChaos.com, http://www.controlchaos.com/about/.
78. Palmer, S.R. and J.M. Felsing, A practical guide to feature-driven development, Chapter 4

Feature-driven development--processes. The Coad Series. 2002: Prentice Hall.
79. DSDM Consortium and J. Stapleton, DSDM: business focused development. 2003, London,

Boston: Addison-Wesley. 239.
80. DSDM Consortium, http://na.dsdm.org/en/about/lifecycle.asp.
81. Elssamadisy, A. and G. Schalliol, Recognizing and responding to "bad smells" in extreme

programming, in ICSE 02. 2002, ACM: Orlando, Florida, USA.
82. Cao, L., et al. How extreme does extreme programming have to be? Adapting XP practices to large-

scale projects. in 37th annual Hawaii international conference on system sciences. 2004.
83. Drobka, J., D. Noftz, and R. Raghu, Piloting XP on four mission-critical projects. IEEE

Software, 2004. 21(6): p. 70-75.
84. Elssamadisy, A. XP on a large project - A developer's view: Extended abstract. in XP Universe.

2001. Raleign, NC.
85. Salo, O. Improving software process in agile software development projects: results from two XP case

studies. in EUROMICRO. 2004.
86. Kahkonen, T. Agile methods for large organizations - building communities of practice. in Agile

Development Conference. 2004.
87. Lippert, M., et al., Developing complex projects using XP with extensions. IEEE Computer,

2003. 36(6): p. 67 - 73.
88. Jacobi, C. and B. Rumpe, Hierarchical XP: Improving XP for large scale projects in analogy to

reorganization processes, in Extreme programming examined, G. Succi and M. Marchesi,
Editors. 2001, Addison-Wesley: Boston. p. 83 - 102.

89. Leffingwell, D., Scaling Software Agility: Best Practices for Large Enterprises. 2007: Addison-
Wesley Professional.

90. Schwaber, K., The enterprise and scrum. 2007, Redmond, WA: Microsoft Press.
91. Larman, C. and B. Vodde, Scaling Lean & Agile Development: Thinking and Organizational

Tools for Large-Scale Scrum. 2008: Addison-Wesley Professional.
92. Maples, C. Enterprise Agile Transformation: The Two Year Wall. in Agile 2009. 2009.

Chicago, USA.
93. Wilby, D. Roadmap Transformation: From Obstacle to Catalyst. in Agile 2009. 2009. Chicago,

USA.
94. Williams, S., L. Knudsen, and I. Gat. Agile in the Enterprise Corporation. in Agile 2009.

2009. Chicago, USA.

www.manaraa.com

 138

95. Sutherland, J. and S. Downey. Shock Therapy: How to Bootstrap a Hyperproductive Team. in
Agile 2009. 2009. Chicago, USA.

96. Guckenheimer, S. Introducing Agile in the Very Large: Microsoft Developer Divisionﾒ s Journey.
in Agile 2009. 2009. Chicago, USA.

97. Miller, A. Distributed Agile Development: Experiments at Microsoft patterns & practices. in Agile
2009. 2009. Chicago, USA.

98. Atlas, A. Accidental Adoption - The Story of Scrum at Amazon.com. in Agile 2009. 2009.
Chicago, USA.

99. Fewell, J. Marriott's Agile Turnaround. in Agile 2009. 2009. Chicago, USA.
100. Moore, E. Influence of Large-Scale Organization Structures on Leadership Behaviors. in Agile

2009. 2009. Chicago, USA.
101. McKinney, S. Leading Agile in an Economic Downturn - "The IBM Transformation Story". in

Agile 2009. 2009. Chicago, USA.
102. Chung, M.-W. and B. Drummond. Agile @ Yahoo! from the Trenches. in Agile 2009. 2009.

Chicago, USA.
103. Striebeck, M. How to run 4.5 Million tests per day. and why! in Agile 2009. 2009. Chicago,

USA.
104. Paulk, M.C., Extreme programming from a CMM perspective. IEEE Software, 2001. 18(6): p.

19 - 26.
105. Veryha, Y., Integration of security guidelines and assessments into outsourced software development,

in Software Engineering 2005. 2005, The international association of science and
technology for development (IASTED): Innsbruck, Austria.

106. McMahon, P.E., Bridging agile and traditional development methods: A project management
perspective. CROSSTALK, The Journal of Defense Software Engineering, 2004. 17(5): p.
16-20.

107. Turk, D., R. France, and B. Rumpe, Assumptions underlying agile software-development
processes. Journal of Database Management, 2005. 16(4): p. 62-87.

108. Gutierrez, L., Min-Gu Lee introduces cutting-edge software technology at international conference, in
The I&TSD Reporter. 2005. p. 20.

109. Reingold, J., How to read a business book, in Fast Company. 2004. p. 106.
110. Wallin, C. and I. Crnkovic. Three aspects of successful software development projects "when are

projects cancelled, and why?" in EUROMICRO. 2003.
111. Hawley, R., Were you born to lead? Engineering Management Journal, 2001. 11(6): p. 247 -

248.
112. Willerton, D., After the curtain was pulled away. IEEE Software, 1999. 16(5): p. 114-117.
113. Mandl-Striegnitz, P. How to successfully use software project simulation for educating. in 31st

annual frontiers in education conference, 2001. 2001. Reno, NV USA.
114. Computer Sciences Corporation, New IS Leaders (Foundation Report 109). 1996.
115. Hancock, J. Application frameworks before system frameworks. in Object-oriented programming,

systems, languages, and applications. 2000. Minneapolis, Minnesota, United States.
116. Ahamed, S.I., A. Pezewski, and A. Pezewski. Towards framework selection criteria and

suitability for an application framework. in International conference on information technology: coding
and computing, 2004. 2004: IEEE.

117. Schneider, K. and J.-P.v. Hunnius. Effective experience repositories for software engineering. in
25th International conference on software engineering. 2003: IEEE.

118. Henninger, S. Tools supporting the creation and evolution of software development knowledge. in
12th IEEE International conference on automated software engineering. 1997: IEEE.

www.manaraa.com

 139

119. Louridas, P., Using Wikis in software development. IEEE Software, 2006. March/April
2006: p. 88-91.

120. Yourdon, E. and L.L. Constantine, Structured design. Fundamentals of a discipline of computer
program and systems design. 1979, Englewood Cliffs, NJ: Yourdon Press.

121. Booch, G., Object-oriented analysis and design with applications. Second edition ed. 1994,
Redwood City, CA, USA: Benjamin-Cummings Publishing Co., Inc.

122. Herbsleb, J., et al., Software quality and the Capability Maturity Model. Communications of
the ACM, 1997. 40(6): p. 30 - 40.

123. Fuggetta, A. Software process: a roadmap. in The Future of Software Engineering. 2000.
Limerick, Ireland: ACM.

124. Borjesson, A. and L. Mathiassen, Successful process implementation. IEEE Software, 2004.
21(4): p. 36 - 44.

125. Pfeffer, J. and J.F. Veiga, Putting people first for organizational success. The Academy of
Management Executive, 1999. 13(2).

126. DeLong, T.J. and V. Vijayaraghavan, Let's hear it for B players. Harvard Business Review,
2003. June 2003.

127. Goleman, D., Leadership that gets results. Harvard Business Review, 2000. March-April
2000.

128. Kotter, J.P., What leaders really do. Harvard Business Review, 2001. December 2001.
129. Collins, J.C. and J.I. Porras, Building your company's vision. Harvard Business Review,

1996. September - October 1996.
130. Haeckel, S.H., Adaptive enterprise: creating and leading sense-and-respond organizations. 1999,

Boston: Harvard Business School Press.
131. Kapoor, S., et al., A technical framework for sense-and-respond business management. IBM

Systems Journal, 2005. 44(1): p. 5-24.
132. Boehm, B., Anchoring the software process. IEEE Software, 1996. 13(4): p. 73 - 82.
133. Følstad, A., H.D. Jørgensen, and J. Krogstie. User involvement in e-government development

projects. in the third Nordic conference on Human-computer interaction. 2004. Tampere, Finland:
ACM Press New York, NY, USA.

134. Garavalia, L.S., P.A. Marken, and R.W. Sommi, Selecting appropriate assessment methods:
Asking the right questions. American Journal of Pharmaceutical Education, 2003.
66(Summer 2003): p. 108 - 112.

135. Parnas, D.L. and D.M. Weiss. Active design reviews: principles and practices. in 8th international
conference on software engineering. 1985: IEEE Computer Society Press.

136. Basili, V.R., G. Caldiera, and H.D. Rombach, The goal question metric approach, in
Encyclopedia of software engineering, two volume set, G. Caldiera and D.H. Rombach, Editors.
1994, John Wiley and Sons, Inc: New York City.

137. Maiden, N.A.M., C. Ncube, and A. Moore, Lessons learned during requirements acquisition for
COTS systems. Communications of the ACM, 1997. 40(12): p. 21-25.

138. Fairley, R.E. and M.J. Willshire, Why the Vasa sank: 10 problems and some antidotes for
software projects. IEEE Software, 2003. 20(2): p. 18 - 25.

139. Peters, T. and N. Austin, A passion for excellence: The leadership difference. 1985, New York:
Random house.

140. Amis, R., Time again for management by walking around?
http://management.itmanagersjournal.com/articl.pl?sid=06/01/12/1856259, in IT Manager's
Journal. 2006.

www.manaraa.com

 140

141. Paré, G. and L. Dubé. Virtual teams: an exploratory study of key challenges and strategies. in
International conference on information systems. 1999.

142. Glazer, H., et al., CMMI or Agile: Why Not Embrace Both! in Agile 2009. 2008, Software
Engineering Institute, Carnegie Mellon University, Technical Note CMU/SEI-2008-
TN-003: Chicago, USA.

143. Kock, N., Communication-focused business process redesign: assessing a communication flow
optimization model through an action research study at a defense contractor. IEEE Transactions
on Professional Communication, 2003a. 46(1): p. 35- 54.

144. Kock, N., Action research: lessons learned from a multi-iteration study of computer-mediated
communication in groups. IEEE Transactions on Professional Communication, 2003b.
46(2): p. 105 - 128.

145. Nandhakumar, J. and D.E. Avison, The fiction of methodological development: a field study of
information systems development. Information Technology & People, 1999. 12(9): p. 176 -
191.

146. Curtis, B., H. Krasner, and N. Iscoe, A field study of the software design process for large
systems. Communications of the ACM, 1988. 31(11): p. 1268 - 1287.

147. Dick, B., You want to do an action research thesis? Available at
http://www.scu.edu.au/schools/gcm/ar/art/arthesis.html. 1993.

148. Avison, D., R. Baskerville, and M. Myers, Controlling action research projects. Information
Technology & People, 2001. 14(1): p. 28 - 45.

149. Baskerville, R.L. and A.T. Wood-Harper, A critical perspective on action research as a method
for information systems research. Journal of Information Technology, 1996. 11: p. 235-246.

150. Pardo, T.A. and H.J. Scholl. Walking atop the cliffs: avoiding failure and reducing risk in large-
scale e-government projects. in 35th annual Hawaii international conference on system sciences. 2002:
IEEE.

151. Briggs, R.O., et al. Lessons learned using a technology transition model with the US Navy. in 32nd
annual Hawaii international conference on system sciences. 1999. Maui, HI, USA: IEEE.

152. Fruhling, A. and G.-J.D. Vreede, Field experiences with eXtreme programming: Developing an
emergency response system. Journal of Management Information Systems, 2006. 22(4): p.
39-68.

153. Börjesson, A., F. Martinsson, and M. Timmerås, Agile improvement practices in software
organizations. European Journal of Information Systems, 2006. 15(2): p. 169 - 182.

154. Dyba, T. and T. Dingsoyr, What Do We Know about Agile Software Development? Software,
2009. 26(5): p. 6-9.

155. Moe, N.B., T. Dingsøyr, and E.A. Røyrvik. Putting Agile Teamwork to the Test – An
Preliminary Instrument for Empirically Assessing and Improving Agile Software Development. in
10th International Conference, XP 2009. 2009. Pula, Sardinia, Italy.

156. Fægri, T.E. Improving General Knowledge in Agile Software Organizations: Experiences with Job
Rotation in Customer Support. in Agile 2009. 2009. Chicago, USA.

157. Salo, O. and P. Abrahamsson. Empirical evaluation of agile software development: The controlled
case study approach. in International conference on product focused software process improvement.
2004. Kansai Science City, Japan.

158. Baskerville, R.L. and J. Stage, Controlling prototype development through risk analysis. MIS
Quarterly, 1996. 20(4): p. 481 - 504.

159. Abrahamsson, P. and N. Iivari. Commitment in software process improvement - In search of the
process. in 35th annual Hawaii international conference on system sciences. 2002: IEEE.

www.manaraa.com

 141

160. Susman, G.I. and R.D. Evered, An assessment of the scientific merits of action research.
Administrative Science Quarterly, 1978. 23(4): p. 582-603.

161. Baskerville, R.L., Investigating information systems with action research. Communications of
the AIS, 1999. 2(9): p. 1-31.

162. Lau, F., Toward a framework for action research in information systems studies. Information
Technology & People, 1999. 12(2): p. 148 - 175.

163. Teasdale, I.A., Building learning systems: A study of the design and implementation of two corporate
learning systems, in Department of Instructional Systems Technology. 2005, Indiana University:
Bloomington, Indiana. p. 235.

164. Truex, D.P., R. Baskerville, and H. Klein, Growing systems in emergent organizations.
Communications of the ACM, 1999. 42(8): p. 117 - 123.

165. Truex, D., R. Baskerville, and J. Travis, Amethodical systems development: the deferred meaning
of systems development methods. Accounting, Management and Information Technologies,
2000. 10: p. 53 - 79.

166. Sommer, R. and B. Sommer, A practical guide to behavioral research. Fifth Edition ed. 2002,
New Tork; Oxford: Oxford University Press.

167. Rumpe, B. and A. Schroder. Quantitative survey on extreme programming projects. in the third
international conference on extreme programming and flexible processes in software engineering,
XP2002. 2002. Alghero, Italy.

168. McKay, J. and P. Marshall, The dual imperatives of action research. Information Technology
& People, 2001. 14(1): p. 46-59.

169. Winter, R., Some principles and procedures for the conduct of action research, in New Directions in
Action Research, O. Zuber-Skerritt, Editor. 1996, Falmer Press: London.

170. O'Brien, R., An overview of the methodological approach of action research, in Theory and Practice
of Action Research. (English version) Available: http://www.web.ca/~robrien/papers/arfinal.html,
J. Pessoa, Editor. 2001, Universidade Federal da Paraíba: Brazil.

171. Hsieh, H.-F., Three Approaches to Qualitative Content Analysis. Qualitative Health
Research, 2005. 15(9): p. 1277 - 1288.

172. The SAGE Encyclopedia of Social Science Research Methods, in The SAGE Encyclopedia of
Social Science Research Methods. 2010.

173. Berelson, B., Content analysis in communication research. 1952, Free Press: New York. p. 13-
20, 147, 165-8.

174. Krippendorff, K., Content analysis: an introduction to its methodology. 2004, Sage Publication.
175. Reinard, J.C., Introduction to Communication Research. 4 ed. 2007: McGraw-Hill. 768.

www.manaraa.com

 142

Appendix A Interview Notes about the Participants’ and Organization’s Experiences

and Expectations

www.manaraa.com

 143

www.manaraa.com

 144

www.manaraa.com

 145

www.manaraa.com

 146

www.manaraa.com

 147

www.manaraa.com

 148

Appendix B Agile Program Assessment Form and Best Practice Checklist

Date: / /2009

Project: ______________________

This form will help you to evaluate agile best practices for your government software

development project. The following diagram provides a list of best practices from

popular agile methods in addition to commercial agile best practices, scaling agile best

practices, and government agile best practices. This form can be customized to meet the

specific requirements of your project.

You can document Challenges, Approaches, and Results. The first column categorizes

five project factors (People, Methodologies, Tools, Process, and Leadership), and each

project factor will be assessed by customizable sub-factors in the second column.

In the third column, please check one (Initial (1), Managed (2), Defined (3),

Quantitatively Managed (4), or Optimizing (5)) to rate these sub-factors, indicating how

you feel for each sub-factors in your project.

In the fourth, fifth, and sixth column, please describe challenges your team face, action

your team will take, and the result. Your input will be continually updated and revised.

You can enter multiple challenges, actions, and results. Also, each result includes an

indicator: positive (+), neutral (=), or negative (-) impact.

www.manaraa.com

 149

Figure 66 Agile Best Practice Checklist Template

Table 22 Agile Assessment Form

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

People Structure Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

www.manaraa.com

 150

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Skill Set Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Training Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Acceptance Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Methodologies Requirement Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Analysis and

Design

Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

www.manaraa.com

 151

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Development Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Test Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Tools Tool Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Framework Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Architecture Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

www.manaraa.com

 152

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Technology Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5))

Process Model Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Execution Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Assess Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Improvement Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

www.manaraa.com

 153

Project Factors Sub-Factors Rate Challenge /

Comments

Approach

Leadership Visionary Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Technical Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Functional Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

Managerial Initial (1)

Managed (2)

Defined (3)

Quantitatively

Managed (4)

Optimizing (5)

www.manaraa.com

 154

Appendix C Interview Notes about Participants’ Experiences with ESD and Results of

the Project

Date: / /2009

Project: .

D1. ESD has been implemented to promote efficient
responsiveness to changes (a benefit of the agile method and a

limitation of the plan-driven method) and predictability (a benefit of
the plan-driven method) for the government project (a limitation of

agile). In your project, could these goals be reached?

Responsiveness to Changes Predictability

2= Fully Achieved,

1 = Partially Achieved

0 = As Always

-1 = Partially Worse

-2 = Much Worse

2= Fully Achieved,

1 = Partially Achieved

0 = As Always

-1 = Partially Worse

-2 = Much Worse

Please explain the obstacles or areas of improvement.

__
__
__
__

__
__
__
__

__
__
__

__

www.manaraa.com

 155

D2. Will you use ESD again? Yes/ No/ Neutral Why/Why

not?

__
__
__

__

__
__

D3. Will you actively advocate for ESD in the future? Yes/

No/ Neutral Why/Why not?

__
__

__
__

__
__

D4. Further comments
__

__
__

__
__

__

Note

• This interview note was developed utilizing content and

structures from previously published research [167].

www.manaraa.com

 156

Appendix D Researcher’s Observation Note

E1. Company

Name of company: ______________

E2. Project

Name of project: ______________

Client sector: ______________

Duration of project: ______________

Team size: ______________

Programming language: ______________

Technologies used: _______________________________________

Software domain: _______________________________________

Development type: ______________

Public Sector Project Characteristics Evaluation

Hard to measure for success because of
multiple aims

Generally not in competition with other

projects

Likely to interact with other

departments

Highly visible to the public and the

media

Constrained by legislation and

regulations

Managed in a risk averse culture

E3. Observation Note: Responsiveness to Changes

Date Event / Memo Criticality

www.manaraa.com

 157

E4. Observation Note: Predictability

Date Event / Memo Criticality

E5. Observation Note: Others

Date Event / Memo Criticality

www.manaraa.com

 158

E6. Project Control Structure

The following guideline was suggested for controlling action

research in the information systems field [148]:

Control

Structure

Form Characteristics Evaluation

Initiation Researcher Field experiment

Practitioner Classic action research
genesis

Collaborative Evolved from existing
interaction

Authority Practitioner Constructed action

warrant

Staged Migration of power

Identify Practitioner and

researcher are the same
person

Formalization Formal Specific written contact or
letter of agreement

Informal Broad, perhaps verbal,

agreement

Evolved Informal or formal project

shift into the opposite
form

Note

• This interview note was developed utilizing content and

structures from previously published research [167].

